中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低碳微合金钢热轧带状组织演变行为的研究

王博 李书恒 莫超群 张庆军

王博, 李书恒, 莫超群, 张庆军. 低碳微合金钢热轧带状组织演变行为的研究[J]. 钢铁钒钛, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
引用本文: 王博, 李书恒, 莫超群, 张庆军. 低碳微合金钢热轧带状组织演变行为的研究[J]. 钢铁钒钛, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
Wang Bo, Li Shuheng, Mo Chaoqun, Zhang Qingjun. The evolution of hot-rolled banded microstructure in low carbon microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024
Citation: Wang Bo, Li Shuheng, Mo Chaoqun, Zhang Qingjun. The evolution of hot-rolled banded microstructure in low carbon microalloyed steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 172-178. doi: 10.7513/j.issn.1004-7638.2023.06.024

低碳微合金钢热轧带状组织演变行为的研究

doi: 10.7513/j.issn.1004-7638.2023.06.024
基金项目: 国家自然科学基金-青年基金(52004093);国家自然科学基金-区域创新发展联合基金重点项目(U21A20114)。
详细信息
    作者简介:

    王博,1986年出生,男, 辽宁铁岭人, 副教授, 通讯作者,研究方向: 钢铁冶金、铸坯质量控制, E-mail:adherent@163.com

    通讯作者:

    王博,1986年出生,男, 辽宁铁岭人, 副教授, 通讯作者,研究方向: 钢铁冶金、铸坯质量控制, E-mail:adherent@163.com

  • 中图分类号: TF76,TG335

The evolution of hot-rolled banded microstructure in low carbon microalloyed steels

  • 摘要: 低碳微合金钢在轧制过程中经常出现带状组织缺陷,对产品质量和使用性能都有着重要的影响。以某厂Q345热轧板坯为研究对象,通过对元素偏析,轧件热轧过程不同轧制道次、不同位置带状组织演变行为进行分析,结果表明,枝晶间溶质元素偏析是导致带状组织形成的本质原因。同时发现不同轧制道次和不同位置轧材,带状组织尺寸有着明显差异。不同轧制道次,相同位置的带状组织,压下率越大,带状组织越细小,压下率为50%时,中心带状组织宽度约为175 μm;压下率为67%时,中心带状组织宽度约为75 μm。相同轧制道次下,不同轧件位置的带状组织比较,可以发现厚度中心位置带状组织最为粗大,表面处最为细小。
  • 图  1  铸坯取样示意(单位:mm)

    Figure  1.  Schematic diagram of slab sampling

    图  2  偏析取样示意(单位:mm)

    Figure  2.  Schematic diagram of segregation sampling

    图  3  连铸板坯低倍组织

    Figure  3.  Macrostructure of continuous casting slab

    图  4  C、Mn偏析指数

    Figure  4.  Segregation index of C and Mn

    图  5  带状组织线扫描形貌

    Figure  5.  Line scan of banded structure

    图  6  带状组织形貌

    Figure  6.  SEM morphology of banded tissue

    图  7  第五道次工序不同位置的组织形貌

    Figure  7.  Structure morphology at different positions during the fifth process

    图  8  第七道次不同位置的组织形貌

    Figure  8.  Structure morphology at different positions during the seventh pass

    图  9  第九道次不同位置的组织形貌

    Figure  9.  Structure morphology at different positions during the ninth pass

    图  10  不同位置带状组织宽度的变化

    Figure  10.  Changes of banded structure width at different positions

    表  1  Q345主要化学成分

    Table  1.   Main chemical composition of Q345 %

    CSiMnPSVNbTiN
    0.140.201.400.0140.0060.0280.0250.020.007
    下载: 导出CSV

    表  2  轧制工艺参数

    Table  2.   Rolling process parameters

    轧制道次厚度/mm道次压下率/%总压下率/%压缩比
    0280.00.00.00.00
    1247.511.611.61.13
    2216.012.722.81.29
    3186.613.633.31.50
    4161.013.742.51.74
    5140.412.850.02.00
    6124.711.255.52.25
    7111.910.360.02.51
    8100.010.664.32.80
    992.17.967.13.00
    下载: 导出CSV
  • [1] Uthaisangsuk V, Muenstermann S, Prahl U, et al. A study of microcrack formation in multiphase steel using representative volume element and damage mechanics[J]. Computational Materals Science, 2011,50(4):1225−1232. doi: 10.1016/j.commatsci.2010.08.007
    [2] Ji Yuan, Min Yunfeng, Li Pengshan, et al. Ribbon structure in steel and its research status[J]. Chinese Metallurgy, 2016,26(4):1−9. (纪元, 闵云峰, 李鹏善, 等. 钢中带状组织及其研究现状[J]. 中国冶金, 2016,26(4):1−9.

    Ji Yuan, Min Yunfeng, Li Pengshan, et al. Ribbon structure in steel and its research status[J]. Chinese Metallurgy, 2016, 26(4): 1-9.
    [3] Verhoeven J D. A review of microsegregation induced banding phenomena in steels[J]. Journal of Materials Engineering and Performance, 2000,9(3):286−296. doi: 10.1361/105994900770345935
    [4] Karimi Y, Nedjad S H, Miyamoto G, et al. Banding effects on the process of grain refinement by cold deformation and recrystallization of acicular C-Mn steel[J]. Materials Science Engineering A, 2017,697(7):1−7.
    [5] Grange R A. Effect of microstructural banding in steel[J]. Metallurgical and Materials Transaction A, 1971,2(2):417−426. doi: 10.1007/BF02663328
    [6] Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J]. Acta Materialia, 2004,52(9):2765−2778. doi: 10.1016/j.actamat.2004.02.044
    [7] Krizan D, Spiradek H K, Pichler A. Relationship between microstructure and mechanical properties in Nb-V microalloyed TRIP steel[J]. Materials Science and Technology, 2015,31(6):661−668. doi: 10.1179/1743284714Y.0000000637
    [8] Krauss G. Solidification, segregation, and banding in carbon and alloy steel[J]. Metallurgical and Materials Transaction B, 2003,34(6):781−792. doi: 10.1007/s11663-003-0084-z
    [9] Gao Xiao, Yang Renjie, Li Yingjie, et al. Effect of strip group on mechanical properties of Q345E steel[J]. Large Castings and Forgings, 2016,(2):29−31. (高潇, 杨仁杰, 李英杰, 等. 带状组组对Q345E钢力学性能的影响[J]. 大型铸锻件, 2016,(2):29−31.

    Gao Xiao, Yang Renjie, Li Yingjie, et al. Effect of strip group on mechanical properties of Q345 E steel[J]. Large Castings and Forgings, 2016, 2: 29-31.
    [10] Wang Zhiyi, Le Kexiang. Q345B causes of delamination defects in medium and thick steel plates[J]. Physical and Chemical Testing: Physical Fascicles, 2009,45(10):613−616. (王智轶, 乐可襄. Q345B中厚钢板分层缺陷的形成原因[J]. 理化检验:物理分册, 2009,45(10):613−616.

    Wang Zhiyi, Le Kexiang. Q345 B causes of delamination defects in medium and thick steel plates[J]. Physical and Chemical Testing: Physical Fascicles, 2009, 45(10): 613-616.
    [11] Shi Kewei, Lu Hongxing, Han Yong, et al. Experimental study on the influence of continuous casting cooling strength on the banded structure grade of steel[J]. Continuous Casting, 2015,40(5):42−44. (石可伟, 卢洪星, 韩勇, 等. 连铸冷却强度对钢材带状组织级别影响的试验研究[J]. 连铸, 2015,40(5):42−44.

    Shi Kewei, Lu Hongxing, Han Yong, et al. Experimental study on the influence of continuous casting cooling strength on the banded structure grade of steel[J]. Continuous Casting, 2015, 40(5): 42-44.
    [12] Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Segregation behavior of alloy elements in medium and low carbon gear steels and its effect on banded structure[J]. Journal of Beijing University of Science and Technology, 2009,31(S1):199−206. (张延玲, 刘海英, 阮小江, 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响[J]. 北京科技大学学报, 2009,31(S1):199−206.

    Zhang Yanling, Liu Haiying, Ruan Xiaojiang, et al. Segregation behavior of alloy elements in medium and low carbon gear steels and its effect on banded structure[J]. Journal of Beijing University of Science and Technology, 2009, 31(S1): 199-206.
    [13] Ji Yuzhong. Control practice of strip structure of 25CrMo4 gear steel produced by continuous casting and rolling[J]. Shandong Metallurgy, 2022,44(4):54−56. (纪玉忠. 连铸连轧生产25CrMo4齿轮钢带状组织的控制实践[J]. 山东冶金, 2022,44(4):54−56.

    Ji Yuzhong. Control practice of strip structure of 25 CrMo4 gear steel produced by continuous casting and rolling[J]. Shandong Metallurgy, 2022, 44(4): 54-56.
    [14] Wang Jie, Dang Shu, e, Fan Zijing, et al. Tissue homogenization of 17CrNiMo6 gear steel[J]. Metal Heat Treatment, 2022,47(11):126−133. (王杰, 党淑娥, 范子靖, 等. 17CrNiMo6齿轮钢的组织均匀化[J]. 金属热处理, 2022,47(11):126−133.

    Wang Jie, Dang Shue, Fan Zijing, et al. Tissue homogenization of 17 CrNiMo6 gear steel [J]. Metal Heat Treatment, 2022, 47(11): 126-133.
    [15] Wen Hongquan, Wu Cunyou, Zhou Yueming. Study on solute redistribution and macroscopic segregation during solidification process of carbon steel continuous casting billet[J]. Baosteel Technology, 2019,(4):45−49. (温宏权, 吴存有, 周月明. 碳钢连铸坯凝固过程溶质再分配及宏观偏析的研究[J]. 宝钢技术, 2019,(4):45−49.

    Wen Hongquan, Wu Cunyou, Zhou Yueming. Study on solute redistribution and macroscopic segregation during solidification process of carbon steel continuous casting billet [J]. Baosteel Technology , 2019(4): 45-49.
    [16] Chen Jixiong, Liu Weihang, Peng Xiaofeng. Formation reason and process improvement of banded structure in microstructure of Q345B thick steel plate[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2021,57(5):18−20, 26. (陈继雄, 刘卫航, 彭晓枫. Q345B厚钢板显微组织中带状组织的形成原因及工艺改进[J]. 理化检验(物理分册), 2021,57(5):18−20, 26.

    Chen Jixiong, Liu Weihang, Peng Xiaofeng. Formation reason and process improvement of banded structure in microstructure of Q345 B thick steel plate[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2021, 57(5): 18-20, 26.
    [17] Huo Xiangdong, Hou Liang, Li Liejun, et al. Recrystallization law of titanium microalloyed high-strength steel[J]. Journal of Materials Heat Treatment, 2017,38(4):119−125. (霍向东, 侯亮, 李烈军, 等. 钛微合金化高强钢的再结晶规律[J]. 材料热处理学报, 2017,38(4):119−125.

    Huo Xiangdong, Hou Liang, Li Liejun, et al. Recrystallization law of titanium microalloyed high-strength steel[J]. Journal of Materials Heat Treatment, 2017, 38(4): 119-125.
    [18] Xie Xinghua, Yao Zekun, Ning Yongquan, et al. Dynamic recrystallization and grain refinement of FGH4096 alloy[J]. Journal of Aeronautical Materials, 2011,31(1):20−24. (谢兴华, 姚泽坤, 宁永权, 等. FGH4096合金的动态再结晶与晶粒细化研究[J]. 航空材料学报, 2011,31(1):20−24. doi: 10.3969/j.issn.1005-5053.2011.1.004

    Xie Xinghua, Yao Zekun, Ning Yongquan, et al. Dynamic recrystallization and grain refinement of FGH4096 alloy[J]. Journal of Aeronautical Materials, 2011, 31(1): 20-24. doi: 10.3969/j.issn.1005-5053.2011.1.004
    [19] Ma Cainü, Gao Xueyun, Hu Zhiyu, et al. Effect of rolling deformation on grain refinement of 0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu of F-M duplex steel[J]. Special Steel, 2022,43(3):91−94. (马才女, 高雪云, 呼陟宇, 等. 轧制变形对F-M双相钢0.05C-2.8Mn-4.2Ni-2Al-1.2Mo-1.9Cu晶粒细化的影响[J]. 特殊钢, 2022,43(3):91−94. doi: 10.3969/j.issn.1003-8620.2022.03.020

    Ma Cainv, Gao Xueyun, Hu Zhiyu, et al. Effect of rolling deformation on grain refinement of 0.05 C-2.8 Mn-4.2 Ni-2 Al-1.2 Mo-1.9 Cu of F-M duplex steel[J]. Special Steel, 2022, 43(3): 91-94. doi: 10.3969/j.issn.1003-8620.2022.03.020
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  119
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回