留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳热还原制备金属钒技术研究

李兰杰 常福增 刘静 张娜 张苏新 王海旭

李兰杰, 常福增, 刘静, 张娜, 张苏新, 王海旭. 碳热还原制备金属钒技术研究[J]. 钢铁钒钛, 2024, 45(2): 1-6. doi: 10.7513/j.issn.1004-7638.2024.02.001
引用本文: 李兰杰, 常福增, 刘静, 张娜, 张苏新, 王海旭. 碳热还原制备金属钒技术研究[J]. 钢铁钒钛, 2024, 45(2): 1-6. doi: 10.7513/j.issn.1004-7638.2024.02.001
Li Lanjie, Chang Fuzeng, Liu Jing, Zhang Na, Zhang Suxin, Wang Haixu. Research on preparation of metal vanadium by carbothermal reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 1-6. doi: 10.7513/j.issn.1004-7638.2024.02.001
Citation: Li Lanjie, Chang Fuzeng, Liu Jing, Zhang Na, Zhang Suxin, Wang Haixu. Research on preparation of metal vanadium by carbothermal reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 1-6. doi: 10.7513/j.issn.1004-7638.2024.02.001

碳热还原制备金属钒技术研究

doi: 10.7513/j.issn.1004-7638.2024.02.001
基金项目: 河北省重点研发计划资助项目(编号:20311008D);河北省自然科学基金资助项目(编号:B2022318001)。
详细信息
    作者简介:

    张苏新,1984年出生,男,山东单县人,研究生,高级工程师,通讯作者,主要从事钒钛新材料研究工作,E-mail:zhsx455@126.com

    通讯作者:

    张苏新,1984年出生,男,山东单县人,研究生,高级工程师,通讯作者,主要从事钒钛新材料研究工作,E-mail:zhsx455@126.com

  • 中图分类号: TF841.3

Research on preparation of metal vanadium by carbothermal reduction

  • 摘要: 以高纯V2O5粉末为原料,C粉末为还原剂,对碳热还原制备金属钒过程进行研究,重点讨论了配碳量、温度、真空度和还原时间对钒中间体和精炼提纯过程的影响。结果表明,V2O5为逐级还原,存在直接和间接还原。配碳比32%,还原温度控制在1350 ℃,保温时间为120 min时,得到的粗钒固溶体相以<VO,V2C>为主,钒含量为84%左右。精炼提纯条件为温度1680 ℃,碳氧比1.02,真空度在0.1 Pa以下时,能得到延展性金属钒产品,纯度达到99.04%。
  • 图  1  钒的氧化和还原吉布斯自由能

    Figure  1.  Gibbs free energy of oxidation and reduction of vanadium

    图  2  温度对V-C-O样品中还原度的影响

    Figure  2.  Effect of temperature on reduction in V-C-O samples

    图  3  配碳比对样品各元素的影响

    Figure  3.  The influence of carbon ratio on the elements of the sample

    图  4  保温时间对粗钒还原率的影响

    Figure  4.  Effect of holding time on degree of reduction for crude vanadium

    图  5  不同配碳比下钒中间体的XRD谱

    Figure  5.  XRD patterns of the vanadium intermediates at different ratio of carbon to crude vanadium

    图  6  最高温度变化对样品中V含量的影响

    Figure  6.  Effect of maximum temperature change on V content in samples

    图  7  碳氧比对样品中V含量的影响

    Figure  7.  Effect of carbon/oxygen ratio on V content in samples

    图  8  真空度对样品中V含量的影响

    Figure  8.  Influence of vacuum degree on V content in sample

    图  9  粗钒提纯过程中温度及压力变化情况

    Figure  9.  Changes of temperature and pressure during the purification of crude vanadium

    图  10  精炼产品物相

    Figure  10.  Phase diagram of the refined product

    表  1  产品成分ICP分析

    Table  1.   ICP analysis of product composition %

    VCOAlCaCrFeMgMnSi
    99.040.2310.0980.07870.1610.0050.11060.01410.0090.0794
    下载: 导出CSV
  • [1] Liu Shuqing. Production status and development trend of vanadium product in world in recent years[J]. Iron Steel Vanadium Titanium, 2014,35(3):55−62. (刘淑清. 近年全球钒制品生产现状及发展趋势[J]. 钢铁钒钛, 2014,35(3):55−62. doi: 10.7513/j.issn.1004-7638.2014.03.013

    Liu Shuqing. Production status and development trend of vanadium product in world in recent years[J]. Iron Steel Vanadium Titanium, 2014, 35(3): 55−62. doi: 10.7513/j.issn.1004-7638.2014.03.013
    [2] Xian Xiaobin, Ye Linsen, Leng Bangyi, et al. Study on preparation and properties of pure vanadium[J]. Rare Metal Materials and Engineering, 2010,39(8):928−931. (鲜晓斌, 叶林森, 冷邦义, 等. 纯钒制备及其性能[J]. 稀有金属材料与工程, 2010,39(8):928−931.

    Xian Xiaobin, Ye Linsen, Leng Bangyi, et al. Study on preparation and properties of pure vanadium[J]. Rare Metal Materials and Engineering, 2010, 39(8): 928−931.
    [3] Fan Liang, Zhang Wei. Vanadium resource and its preparation technology[J]. Advanced Materials Industry, 2016(1):41−46. (范亮, 张炜. 钒资源及其制备技术[J]. 新材料产业, 2016(1):41−46. doi: 10.3969/j.issn.1008-892X.2016.01.010

    Fan Liang, Zhang Wei. Vanadium resource and its preparation technology[J]. Advanced Materials Industry, 2016(1): 41−46. doi: 10.3969/j.issn.1008-892X.2016.01.010
    [4] Liao Shiming, Bai Tanlun. Vanadium metallurgy abroad[M]. Beijing: Metallurgical Industry Press, 1985. (廖世明, 柏谈论. 国外钒冶金[M]. 北京: 冶金工业出版社, 1985.

    Liao Shiming, Bai Tanlun. Vanadium metallurgy abroad[M]. Beijing: Metallurgical Industry Press, 1985.
    [5] Hou Shuai, Tian Ying, Li Yungang. Research progress in preparation methods of vanadium metal[J]. Rare Metals and Cemeted Carbides, 2022,50(6):22−26, 32. (侯帅, 田颖, 李运刚. 金属钒制备方法的研究进展[J]. 稀有金属与硬质合金, 2022,50(6):22−26, 32.

    Hou Shuai, Tian Ying, Li Yungang. Research progress in preparation methods of vanadium metal[J]. Rare Metals and Cemeted Carbides, 2022, 50(6): 22−26, 32.
    [6] Lei K P V, Campbell R E, Sullivan T A. Electrolytic preparation of vanadium from vanadium carbide[J]. Journal of Electrochemical Society, 1973,120(2):211−215. doi: 10.1149/1.2403422
    [7] Xiong Weihua, Wu Jun, Zhang Zhenhua,et al. Domestic development of vanadium detector for core self-sufficient energy in Qinshan No. 3 nuclear power plant[C]// Proceedings of the 7th National Conference on Nuckar Instrument and Its Application & the 5th Nuclear Reactou Instrument Conference. Xining: Chinese Institute of Electronics, Chinese Nuclear Society, 2009. (熊伟华, 吴军, 张振华, 等. 秦山第三核电厂堆芯自给能钒探测器国产化研制[C]. 第七届全国核仪器及其应用学术会议暨全国第五届核反应堆用核仪器学术会议论文集. 西宁: 中国电子学会, 中国核学会, 2009.

    Xiong Weihua, Wu Jun, Zhang Zhenhua,et al. Domestic development of vanadium detector for core self-sufficient energy in Qinshan No. 3 nuclear power plant[C]// Proceedings of the 7th National Conference on Nuckar Instrument and Its Application & the 5th Nuclear Reactou Instrument Conference. Xining: Chinese Institute of Electronics, Chinese Nuclear Society, 2009.
    [8] Moskalyk R R, Alfantazi A M. Processing of vanadium: a review[J]. Minerals Engineering, 2003,16(9):793−805. doi: 10.1016/S0892-6875(03)00213-9
    [9] Wang T, Xu L, Liu C, et al. Calcified roasting-acid leaching process of vanadium from low-grade vanadium-containing stone coal[J]. Chinese Journal of Geochemistry, 2014,33(2):163−167. doi: 10.1007/s11631-014-0672-4
    [10] Sun Zhaohui. Understanding the situation clearly promoting sustainable development on China’s vanadium industry[J]. Ferro-alloys, 2008(6):44−48. (孙朝晖. 充分认清形势, 促进中国钒产业的可持续发展[J]. 铁合金, 2008(6):44−48. doi: 10.3969/j.issn.1001-1943.2008.06.011

    Sun Zhaohui. Understanding the situation clearly promoting sustainable development on China’s vanadium industry[J]. Ferro-alloys, 2008(6): 44−48. doi: 10.3969/j.issn.1001-1943.2008.06.011
    [11] Jon Hykawy. Vanadium supercharger[R]. Byron Capital Market, 2009, November.
    [12] Ulaganathan M, Arabindan V, Yan Q Y, et al. Recent advancements in all-vanadium redox flow batteries[J]. Advanced Materials Interfaces, 2016,3(1):1−22.
    [13] Kumar S, Jain A, Ichikawa T, et al. Development of vanadium based hydrogen storage material: a review[J]. Renewable and Sustainable Energy Reviews, 2017,72:791−800. doi: 10.1016/j.rser.2017.01.063
    [14] Koyama K, Hashimoyo Y, Omori S, et al. Carbothermic reduction of V2O3 under reduced pressure[J]. Transactions of the Japan Institute of Metals, 1982,23(8):451−460. doi: 10.2320/matertrans1960.23.451
    [15] Ono K, Moriyama J. Carbothermic reduction and electron beam melting of vanadium[J]. Journal of the Less Common Metals, 1981,81:79−89. doi: 10.1016/0022-5088(81)90271-X
    [16] Anonymous. Preparation of plastic vanadium by carbon reduction metal vanadium block[J]. Rare Metal Materials and Engineering, 1974(3):25−40. (佚名. 用碳还原金属钒块制取可塑性钒的研制[J]. 稀有金属合金加工, 1974(3):25−40.

    Anonymous. Preparation of plastic vanadium by carbon reduction metal vanadium block[J]. Rare Metal Materials and Engineering, 1974(3): 25−40.
    [17] Wang Yanhui, Liu Qi, Bo Xinwei, et al. Research on sintering performance of high purity metal vanadium powders[J]. Powder Metallurgy Technology, 2019,37(5):339−343, 349. (王焱辉, 刘奇, 薄新维, 等. 高纯金属钒粉烧结性能研究[J]. 粉末冶金技术, 2019,37(5):339−343, 349.

    Wang Yanhui, Liu Qi, Bo Xinwei, et al. Research on sintering performance of high purity metal vanadium powders[J]. Powder Metallurgy Technology, 2019, 37(5): 339−343, 349.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  33
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-08
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回