Overview of non-quenched and tempered steel for automotive
-
摘要: 分析了国内外非调质钢在汽车零部件领域的发展历程及现状,重点分析了非调质钢的强韧化技术措施、硫化物形态和分布的控制技术,以及材料偏析的控制措施。非调质钢强韧化主要通过成分及生产工艺优化和组织优化两个途径实现,硫化物形态和分布可以从冶炼、凝固和轧制等过程进行调控,硫化物偏析可以从凝固过程和连铸工艺进行改善。未来,随着非调质钢市场的发展及品种需求的进一步提升,非调质钢将向着多品种化、微合金高强化、易切削化、高速化及高可靠性方向进一步发展。Abstract: In this paper the development history and status quo of non-quenched and tempered steel for making auto parts worldwidely had been described, and the technologies such as strengthening & toughening, sulfide form and distribution control, and material segregation control had been highlighted. The strength and toughening of non-quenched and tempered steel are mainly realized through two approaches: composition and production process optimization and microstructure optimization. Sulfide morphology and distribution can be regulated from smelting, solidification, and rolling processes, and sulfide segregation can be improved from solidification process and continuous casting process. In the future, with the development of the non-quenched and tempered steel market and the further improvement of variety demand, non-quenched and tempered steel will further develop in the direction of multi-variety, micro-alloying high strengthen, easy cutting, high speed, and high reliability.
-
图 1 不同强度级别非调质钢的强韧性匹配情况[16]
Figure 1. Matching situation of strength and toughness of different strength grades of non-quenched and tempered steel
图 3 2012~2018年我国非调质钢用量及占比情况[20]
Figure 3. The consumption and proportion of non-quenched and tempered steel in China from 2012 to 2018
图 5 V-N钢晶粒细化原理[16]
Figure 5. The grain refinement principle of the V-N steel
图 6 硫化物形状对切削性能的影响[32]
Figure 6. The influence of sulfide shape on cutting performance
图 9 非金属夹杂物种类和尺寸对疲劳性能的影响[33]
Figure 9. Influence of the type and size of non-metallic inclusions on fatigue performance of non-quenched and tempered steel
图 10 含硫钢凝固分率与温度的关系[50]
Figure 10. Relationship between solidification rate and temperature of sulfur-containing steel
表 1 国外生产的非调质钢代表钢种及成分性能情况
Table 1. Steel grade and composition properties of typical non-quenched and tempered steel produced abroad
产地 代表钢种 主要成分/% 用途 强度级别/MPa C Si Mn S V Ti N 德国 49MnVS3 0.47 0.20 0.85 0.050 0.10 0.014 曲轴 850 C70S6 0.70 0.20 0.50 0.060 0.03 0.015 连杆 900 38MnVS6 0.38 0.65 1.40 0.030 0.10 0.017 活塞 850 美国 44MnSiVS6 0.44 0.65 1.45 0.025 0.16 0.015 0.017 曲轴 950 瑞典 V-2906 0.45 0.30 0.70 0.050 0.10 0.017 曲轴 850 V-2908 0.38 0.55 1.40 0.050 0.016 曲轴 800 日本 S38CMS1 0.38 0.55 1.45 0.060 0.014 曲轴 800 SVh40C 0.40 0.20 0.75 0.020 0.05 0.010 曲轴 800 36MnVS4 0.38 0.65 1.00 0.070 0.25 0.017 连杆 950 表 2 国外汽车零部件用非调质钢相关专利主要申请人分析
Table 2. Analysis of the main applicants for foreign patents related to non-quenched and tempered steel for auto parts
申请人 专利数/个 日本制铁株式会社 127 大同特殊钢株式会社 54 株式会社神户制钢所 50 JFE钢铁株式会社 30 韩国现代汽车公司 25 本田技研工业株式会社 18 安塞乐米塔尔 18 日本爱知制钢株式会社 18 丰田自动车株式会社 17 日产自动车株式会社 17 -
[1] 董成瑞. 微合金非调质钢[M]. 北京: 冶金工业出版社, 2000.Dong Chengrui. Microalloyed non quenched and tempered steel[M]. Beijing: Metallurgical Industry Press, 2000. [2] Deardo A J, Hua M J, Cho K G, et al. On strength of microalloyed steels: an interpretive review[J]. Materials Science and Technology, 2013,25(9):1074−1082. [3] Thewillis G, Naylor D J. New alloys help cut the cost of forged steel components[J]. Metals and Materials, 1981,(12):21−28. [4] 米丰亮. 非调质钢C38+N曲轴组织和力学性能研究[D]. 济南: 山东大学, 2018.Mi Fengliang. Regulation of microstructure and mechanical properties of C38+N crankshaft of non quenched and tempered steel[D]. Jinan: Shandong University, 2018. [5] Mibourn D. Vanadium microalloyed non-quench and temper forging steels[R]. Chongqing: International Vanitec Technology Committee, 2011: 1-35. [6] Chen Yunbo, Ma Mingtu, Wang Guodong. Resent progress of non-quenched and tempered steel for automotive sheet[J]. Strategic Study of CAE, 2014,16(2):4−17, 45. (陈蕴博, 马鸣图, 王国栋. 汽车用非调质钢的研究进展[J]. 中国工程科学, 2014,16(2):4−17, 45.Chen Yunbo, Ma Mingtu, Wang Guodong. Resent progress of non-quenched and tempered steel for automotive sheet[J]. Strategic Study of CAE, 2014, 16(2): 4-17+45. [7] Chen Silian, Hui Weijun, Wang Lianhai, et al. Research and development of energy-saving high performance microalloyed forging steels[J]. Iron & Steel, 2014,49(6):1−7. (陈思联, 惠卫军, 王连海, 等. 节能低成本高品质非调质钢的研发[J]. 钢铁, 2014,49(6):1−7.Chen Silian, Hui Weijun, Wang Lianhai, et al. Research and development of energy-saving high performance microalloyed forging steels[J]. Iron & Steel, 2014, 49(06): 1-7. [8] Miao Taosheng, Jiang Peng. Application research on non-quenched and tempered steel for automotive forging of crankshaft and connecting rod[J]. Forging & Stamping Technology, 2010,35(6):1−5. (缪桃生, 蒋鹏. 非调质钢在汽车曲轴、连杆锻件上的应用研究[J]. 锻压技术, 2010,35(6):1−5.Miao Taosheng, Jiang Peng. Application research on non-quenched and tempered steel for automotive forging of crankshaft and connecting rod[J]. Forging & Stamping Technology, 2010, 35(6): 1-5. [9] Dong Han. Understanding of developing high quality special steel industry[J]. China Steel, 2011,(10):10−13. (董瀚. 对发展高品质特殊钢产业的认识[J]. 中国钢铁业, 2011,(10):10−13. doi: 10.3969/j.issn.1672-5115.2011.10.004Dong Han. Understanding of developing high quality special steel industry[J]. China Steel, 2011(10): 10-13. doi: 10.3969/j.issn.1672-5115.2011.10.004 [10] Zhou Yazhuo, Jin Wenhui, Yu Qin, et al. Development trend on crankshaft materials of non quenched and tempered steel[J]. Heat Treatment Technology and Equipment, 2018,39(4):61−65. (周亚倬, 金文辉, 于勤, 等. 非调质钢曲轴用材发展趋势[J]. 热处理技术与装备, 2018,39(4):61−65.Zhou Yazhuo, Jin Wenhui, Yu Qin, et al. Development trend on crankshaft materials of non quenched and tempered steel[J]. Heat Treatment Technology and Equipment, 2018, 39(04): 61-65. [11] Naylor D J. Review of international activity on microalloyed engineering steels[J]. Ironmaking & Steelmaking, 1989,16(4):246−252. [12] Liu Donglin, Tan Li, Liu Pan, et al. The application of 38MnVS6 non quenched and tempered steel on automobile steering knuckle[J]. Hot Working Technology, 2014,43(2):80−81, 85. (刘栋林, 谭利, 刘攀, 等. 38MnVS6非调质钢在汽车转向节上的应用[J]. 热加工工艺, 2014,43(2):80−81, 85.Liu Donglin, Tan Li, Liu Pan, et al. The application of 38 MnVS6 non quenched and tempered steel on automobile steering knuckle [J]. Hot Working Technology, 2014, 43(02): 80-81+85. [13] Buchmayr B. Critical assessment 22: bainitic forging steels[J]. Materials Science and Technology, 2016,32(6):517−522. doi: 10.1080/02670836.2015.1114272 [14] Liu Jie, Wu Dan, Yang Xiujuan, et al. Research status and development trend of non-quenched and tempered steel[J]. Hot Working Technology, 2021,50(23):1−6, 10. (刘洁, 吴丹, 杨秀娟, 等. 非调质钢的研究现状及发展趋势[J]. 热加工工艺, 2021,50(23):1−6, 10.Liu Jie, Wu Dan, Yang Xiujuan, et al. Research status and development trend of non-quenched and tempered steel[J]. Hot Working Technology, 2021, 50(23): 1-6+10. [15] Merkel C, Engineer J. Hochfester bainitischer stahl 20MnCrMo7 für umformanwendungen[J]. Schmiede Journal, 2014(2): 38-41. [16] Wang Xiaoning, Fang Gang, Li Yang, et al. Application status and development of automotive non quenched and tempered steel[J]. Automobile Technology & Material, 2014,(9):52−58. (王小宁, 方刚, 李阳, 等. 汽车用非调质钢的应用现状与发展[J]. 汽车工艺与材料, 2014,(9):52−58.Wang Xiaoning, Fang Gang, Li Yang, et al. Application status and development of automotive non quenched and tempered steel[J]. Automobile Technology & Material, 2014(09): 52-58. [17] Gu Zhimin, Zhang Qingjun, Zhu Liguang, et al. Recent progress in non-quenched-tempered and its application[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2012,34(3):59−63. (谷志敏, 张庆军, 朱立光, 等. 非调质钢的研究进展及其实践[J]. 河北联合大学学报(自然科学版), 2012,34(3):59−63.Gu Zhimin, Zhang Qingjun, Zhu Liguang, et al. Recent progress in non-quenched-tempered and its application[J]. Journal of North China University of Science and Technology(Natural Science Edition) , 2012, 34(03): 59-63. [18] 吴玮. 汽车零部件用非调质钢的应用和发展[J]. 世界钢铁, 2009, 9(4): 62-68.Wu Wei. Application and development of non-quenched and tempered steel for automotive parts[J]. World Iron & Steel, 2009, 9(4): 62-68. [19] 市场调研报告. 全球及中国非调质钢市场现状及未来趋势走向分析报告, QYResearch预测: 2019-2025全球与中国非调质钢市场现状及未来发展趋势[EB/OL]. (2020-10-27) [2023-07-02]. https://zhuanlan.zhihu.com/p/84287755.Market research report analysis. Report on the current situation and future trends of the global and Chinese non quenched and tempered steel market, QYResearch Forecast: 2019-2025 Current situation and future development trends of the global and Chinese non quenched and tempered steel market [EB/OL]. (2019-09-26) [2022-05-15]. https://zhuanlan.zhihu.com/p/84287755. [20] 智研咨询. 2018年中国非调质钢行业产量82.4万吨, 预计2020年市场规模将超过60亿元[EB/OL]. (2019-03-21) . https://www.chyxx.com/industry/201903/723554.html.Zhiyanzixun. In 2018, China's non quenched and tempered steel industry produced 824000 tons, and it is expected that the market size will exceed 6 billion yuan by 2020 [EB/OL]. (2019-03-21) .https://www.chyxx.com/industry/201903/723554.html. [21] 全国新能源汽车保有量达1310万辆[N]. 新能源汽车报, 2023-01-16(5).The total number of new energy vehicles in China has reached 13.1 million [N] .New Energy Vehicle News, 2023-01-16 (5). [22] 马鸣图. 双相钢——物理和力学冶金第2版[M]. 北京: 冶金工业出版社, 2009: 1-12.Ma Mingtu. Duplex steels - physical and mechanical metallurgy 2nd Edition[M]. Beijing: Metallurgical Industry Press, 2009: 1-12. [23] Huo Dongmei, Xiao Bangguo, Yang Weining, et al. Summary of the standard“Non-quenched and tempered steel for automobile crankshaft and connecting rod"[J]. Metallurgical Economy and Management, 2020,(3):41−43. (霍咚梅, 肖邦国, 杨伟宁, 等. 《汽车曲轴和连杆用非调质圆钢》团体标准综述[J]. 冶金经济与管理, 2020,(3):41−43.Huo Dongmei, Xiao Bangguo, Yang Weining, et al. Summary of the standard“Non-quenched and tempered steel for automobile crankshaft and connecting rod"[J]. Metallurgical economy and management, 2020(03): 41-43. [24] Zhu Shuaishuai, Wang Zhangzhong, Mao Xiangyang, et al. A review about strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels[J]. Materials Reports, 2016,30(9):122−126. (朱帅帅, 王章忠, 毛向阳, 等. 铁素体-珠光体型非调质钢强韧化技术研究进展[J]. 材料导报, 2016,30(9):122−126.Zhu Shuaishuai, Wang Zhangzhong, Mao Xiangyang, et al. A review about strengthening-toughening technologies for ferrite-pearlite non-quenched and tempered steels[J]. Materials Reports, 2016, 30(09): 122-126. [25] Chen Silian, Zhao Xiaoli, Hui Weijun, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod[J]. Iron & Steel, 2015,50(7):77−83. (陈思联, 赵晓丽, 惠卫军, 等. 胀断连杆用中碳非调质钢的析出强化行为[J]. 钢铁, 2015,50(7):77−83.Chen Silian, Zhao Xiaoli, Hui Weijun, et al. Precipitation behavior of medium-carbon steel for fracture splitting connecting rod[J]. Iron & Steel, 2015, 50(07): 77-83. [26] Jha G, Sharma R, Jha C N, et al. Medium carbon microalloyed steel 49MnVS3: development towards improved quality[J]. Transactions of the Indian Institute of Metals, 1997,50(2):181−190. [27] Chen Yunbo, Ma Wei, Jin Kang. Development on improving the strength & toughness of microalloyed steels[J]. Materials Reports, 2000,(8):3−7. (陈蕴博, 马炜, 金康. 强韧微合金非调质钢的研究动向[J]. 材料导报, 2000,(8):3−7.Chen Yunbo, Ma Wei, Jin Kang. Development on lmproving the strength & toughness of microalloyed steels[J]. Materials Reports, 2000(08): 3-7. [28] Song Yu, Wu Guoping, Wu Tianli. Application of oxide metallurgy technique in improving microstructure and property of steels[J]. China Metallurgy, 2012,22(6):1−7, 11. (宋宇, 武国平, 吴天礼. 氧化物冶金技术在改善钢材组织和性能中的应用[J]. 中国冶金, 2012,22(6):1−7, 11.Song Yu, Wu Guoping, Wu Tianli. Application of oxide metallurgy technique in lmproving microstructure and property of steels[J]. China Metallurgy, 2012, 22(06): 1-7+11. [29] Yu Yang, Pan Tao. New technology opens up new space - rapid development and application of vanadium nitrogen alloying technology[J]. China Metallurgy, 2005,(2):44−45. (于杨, 潘涛. 新技术开启新空间−迅猛发展应用的钒氮合金化技术[J]. 中国冶金, 2005,(2):44−45.Yu Yang, Pan Tao. New technology opens up new space - rapid development and application of vanadium nitrogen alloying technology[J]. China Metallurgy, 2005(02): 44-45. [30] Chen Silian, Hui Weijun, Shao Chengwei, et al. Effect of controlled cooling on microstructure and properties of medium-carbon high-vanadium microalloyed steel[J]. Iron & Steel, 2015,50(8):77−82. (陈思联, 惠卫军, 邵成伟, 等. 控制冷却对中碳高钒非调质钢组织性能的影响[J]. 钢铁, 2015,50(8):77−82.Chen Silian, Hui Weijun, Shao Chengwei, et al. Effect of controlled cooling on microstructure and properties of medium-carbon high-vanadium microalloyed steel[J]. Iron & Steel, 2015, 50(08): 77-82. [31] Liu H T, Chen W Q. Research on recovery for adding low melting point metal bismuth to eco-friendly Bi–S based free cutting steel[J]. Ironmaking & Steelmaking, 2014,41(5):355−359. [32] Mohla P P, Beech J. The formation of sulphide inclusions in cast steel[J]. Brit Foundryman, 1968,61(12):453−460. [33] 马鸣图. 汽车用非调质钢的进展[C]//全国高品质特殊钢生产技术研讨会暨中国金属学会特殊钢学术年会.济南:中国金属学会, 2021.Ma Mingtu. Development of non quenched and tempered steels for automobiles[C]// National High Quality Special Steel Production Technology Seminar and Special Steel Academic Annual Meeting of China Metal Society. Jinan:China Metal Society,2021. [34] Wang Zhanhua, Hui Weijun, Zhang Yongjian, et al. High-cycle fatigue properties of microalloyed medium-carbon forging steel 45MnVS with modified sulfide[J]. Iron & Steel, 2021,56(10):117−126. (王占花, 惠卫军, 张永健, 等. 硫化物变性处理45MnVS非调质钢的高周疲劳性能[J]. 钢铁, 2021,56(10):117−126.Wang Zhanhua, Hui Weijun, Zhang Yongjian, et al. High-cycle fatigue properties of microalloyed medium-carbon forging steel 45 MnVS with modified sulfide[J]. Iron & Steel, 2021, 56(10): 117-126. [35] Zhou Zhiwei, Tian Jun, Xu Yifeng. Distribution of inclusions in non-quenched and tempered steel billets[J]. Steelmaking, 2019,35(5):68−74. (周志伟, 田俊, 徐益峰. 非调质钢铸坯中夹杂物的分布[J]. 炼钢, 2019,35(5):68−74.Zhou Zhiwei, Tian Jun, Xu Yifeng. Distribution of inclusions in non-quenched and tempered steel billets[J]. Steelmaking, 2019, 35(05): 68-74. [36] Qiao Xueliang, Sun Peizhen. Quantitative study on Ca content and sulfide morphology in free cutting steel[J]. Journal of Huazhong University of Science and Technology, 1995,23(1):121−123. (乔学亮, 孙培祯. 易切削钢中Ca含量与硫化物形态的定量研究[J]. 华中理工大学学报, 1995,23(1):121−123.Qiao Xueliang, Sun Peizhen. Quantitative study on Ca content and sulfide morphology in free cutting steel[J]. Journal of Huazhong University of Science and Technology, 1995, 23(1): 121-123. [37] Larsson A, Ruppi S. Structure and composition of built-up layers on coated tools during turning of Ca-treated steel[J]. Materials Science and Engineering:A, 2001,313(1-2):160−169. doi: 10.1016/S0921-5093(01)00964-9 [38] Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019,31(4):361−367. (艾克南, 谢剑波, 曾志崎, 等. 镁对非调质钢中组织及硫化物的影响[J]. 钢铁研究学报, 2019,31(4):361−367.Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019, 31(04): 361-367. [39] Feng Shunhuai. Development of free cutting steel at home and abroad in the 1980s[J]. Manufacturing Technology & Machine Tool, 1994,(7):51−54. (封顺怀. 80年代国内外易切削钢的发展[J]. 制造技术与机床, 1994,(7):51−54.Feng Shunhuai. Development of free cutting steel at home and abroad in the 1980 s[J]. Manufacturing Technology & Machine Tool, 1994(07): 51-54. [40] Lou Dechun, Wu Xiaochun. Prediction of rare earth inclusion in free cutting steel[J]. Research on Iron and Steel, 1995,(3):29−33, 28. (娄德春, 吴晓春. 易切削钢中稀土夹杂物类型的预测[J]. 钢铁研究, 1995,(3):29−33, 28.Lou Dechun, Wu Xiaochun. Prediction of rare earth inclusion in free cutting steel[J]. Research on Iron and Steel, 1995(03): 29-33+28. [41] Yao Dengyuan, Wu Huajie, Lu Pengyan, et al. Effect of Ca treatment on sulfides morphology in S-bearing non-quenched and tempered steel[J]. China Metallurgy, 2017,27(4):11−16. (姚登元, 吴华杰, 陆鹏雁, 等. 钙处理对含硫非调质钢中硫化物形态的影响[J]. 中国冶金, 2017,27(4):11−16.Yao Dengyuan, Wu Huajie, Lu Pengyan, et al. Effect of Ca treatment on sulfides morphology in S-bearing non-quenched and tempered steel[J]. China Metallurgy, 2017, 27(04): 11-16. [42] Shen P, Yang Q K, Zhang D, et al. The effect of tellurium on the formation of MnTe-MnS composite Inclusions in non-quenched and tempered steel[J]. Metals, 2018,8(8):639(1−12). [43] Shen P, Zhou L, Yang Q K, et al. Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel[J]. Metallurgical Research and Technology, 2020,117(6):615(1−8). [44] Xie Xiaoyu, Gu Chao, Wang Min, et al. Manganese sulfide inclusion control technology in medium and high sulfur steel[J]. Iron & Steel, 2021,56(12):52−61. (谢啸宇, 顾超, 王敏, 等. 中高硫钢中硫化锰夹杂物控制技术[J]. 钢铁, 2021,56(12):52−61.Xie Xiaoyu, Gu Chao, Wang Min, et al. Manganese sulfide inclusion control technology in medium and high sulfur steel[J]. Iron & Steel, 2021, 56(12): 52-61. [45] Hu Tao, Zhong Liangmei, Zhou Lei, et al. The practice of tellurium to control the form of sulfide in non-quenched and tempered steel[J]. Steelmaking, 2022,38(1):63−67. (胡涛, 钟亮美, 周蕾, 等. 碲对非调质钢中硫化物形态调控的实践[J]. 炼钢, 2022,38(1):63−67.Hu Tao, Zhong Liangmei, Zhou Lei, et al. The practice of tellurium to control the form of sulfide in non-quenched and tempered steel[J]. Steelmaking, 2022, 38(01): 63-67. [46] 吴华杰. 二次开坯轧制对含硫钢硫化物形态分布的影响[C]//2021年全国炉外精炼论文集.贵阳: 北京金属学会, 2021: 619-625.Wu Huajie. Effect of secondary bloom rolling on sulfide morphology distribution of sulfur-containing steel[C]//2021 Proceedings of National off Furnace Refining.Guiyang: Beijing Metal Society, 2021: 619-625. [47] Shao X J, Wang X H, Ji C X, et al. Morphology, size and distribution of MnS inclusions in non-quenched and tempered steel during heat treatment[J]. International Journal of Minerals, Metallurgy and Materials, 2015,22(5):483−491. doi: 10.1007/s12613-015-1097-8 [48] Shao Xiaojing, Wang Xinhua, Wang Wanjun, et al. lnfluence of isothermal treatment on sulfides in YF45MnV steel[J]. Transactions of Materials and Heat Treatment, 2010,31(10):80−84. (邵肖静, 王新华, 王万军, 等. 等温热处理对YF45MnV钢中硫化物的影响[J]. 材料热处理学报, 2010,31(10):80−84.Shao Xiaojing, Wang Xinhua, Wang Wanjun, et al. lnfluence of isothermal treatment on sulfides in YF45 MnV steel[J]. Transactions of Materials and Heat Treatment, 2010, 31(10): 80-84. [49] Shao X J, Wang X H, Jiang M, et al. Effect of heat treatment conditions on shape control of large-sized elongated MnS inclusions in resulfurized free-cutting steels[J]. ISIJ International, 2011,51(12):1995−2001. doi: 10.2355/isijinternational.51.1995 [50] 刘辉. 含硫钢凝固过程硫化锰析出及生长行为研究[D]. 上海: 上海大学, 2019.Liu Hui. The precipitation and growth behavior of MnS during solidification in resulphurised steel[D]. Shanghai: Shanghai University, 2019. [51] 许伟阳. 连铸齿轮钢矩形坯碳“锭型”偏析的形成与控制[D]. 北京: 钢铁研究总院, 2011.Xu Weiyang. The formation and control of carbon segregation of gear steel in the bloom casting process[D]. Beijing: Central Iron and Steel Research Institute, 2011.