中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒渣高效提取冶金:机械活化强化钠化提钒技术

谯露 向俊一 黄青云 李兰杰 吕学伟

谯露, 向俊一, 黄青云, 李兰杰, 吕学伟. 钒渣高效提取冶金:机械活化强化钠化提钒技术[J]. 钢铁钒钛, 2025, 46(3): 12-17. doi: 10.7513/j.issn.1004-7638.2025.03.003
引用本文: 谯露, 向俊一, 黄青云, 李兰杰, 吕学伟. 钒渣高效提取冶金:机械活化强化钠化提钒技术[J]. 钢铁钒钛, 2025, 46(3): 12-17. doi: 10.7513/j.issn.1004-7638.2025.03.003
QIAO Lu, XIANG Junyi, HUANG Qingyun, LI Lanjie, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: mechanochemically enhanced sodium salt roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 12-17. doi: 10.7513/j.issn.1004-7638.2025.03.003
Citation: QIAO Lu, XIANG Junyi, HUANG Qingyun, LI Lanjie, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: mechanochemically enhanced sodium salt roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 12-17. doi: 10.7513/j.issn.1004-7638.2025.03.003

钒渣高效提取冶金:机械活化强化钠化提钒技术

doi: 10.7513/j.issn.1004-7638.2025.03.003
基金项目: 国家自然科学基金(52474323),重庆科技大学研究生创新计划项目(YKJCX2420221)。
详细信息
    作者简介:

    谯露,2001年出生,女,陕西汉中人,硕士研究生,研究方向为钒渣提钒,E-mail:18329667521@163.com

    通讯作者:

    向俊一,1989年出生,湖北宜昌人,博士,副研究员,研究方向为钒冶金及新材料制备,E-mail:xiangjunyi126@126.com

  • 中图分类号: TF841.3

Efficient metallurgical extraction of vanadium slag: mechanochemically enhanced sodium salt roasting vanadium extraction process

  • 摘要: 针对钒渣钠化焙烧-水浸提钒工艺一次焙烧转化率低、高温回转窑结圈等技术难题,提出了机械活化-造球协同预处理强化钒渣提钒技术。通过高能球磨活化促进钒渣物相解离与微观结构调控,提升其反应活性,并通过造球工艺改善原料传热均匀性与氧化速率,提高回转窑处理效率。采用XRD、激光粒度分析和BET比表面积等测定手段,系统分析了活化前后钒渣的物理化学性质及焙烧转浸变化规律。结果表明,机械活化会导致晶格畸变引起衍射峰宽化,且将钒渣平均粒径从43.035 μm降至7.627 μm,比表面积从0.725 m2/g升至2.514 m2/g;机械活化可显著提高钒渣混料球团的下落强度与抗压强度;钒渣最佳焙烧温度降低50 ℃,一次焙烧钒浸出率达到95.38%。新技术在低温下实现了钒收率提高,有效避免了回转窑结圈,是一种高效提钒技术。
  • 图  1  不同活化时间钒渣的XRD

    Figure  1.  XRD patterns of vanadium slag with different activation time

    图  2  不同活化时间钒渣粒度分布

    Figure  2.  Particle size distribution for vanadium slag with different activation time

    图  3  不同活化时间钒渣SEM

    Figure  3.  SEMs of vanadium slag with different activation time

    (a) 0 min; (b) 5 min; (c) 10 min; (d) 20 min

    图  4  钒渣混料球团照片

    (a)生球; (b)干球

    Figure  4.  Photos of vanadium slag mixed material pellets

    图  5  不同活化时间对钒渣混料球团强度影响

    (a)落下次数;(b)抗压强度

    Figure  5.  Effect of activation time on the strength of vanadium slag pellets

    图  6  浸出时间对焙烧球团熟料中钒浸出率的影响

    Figure  6.  Effect of leaching time on leaching efficiency of vanadium from pellets

    图  7  球团尺寸对钒浸出率的影响

    Figure  7.  Effect of pellets size on leaching efficiency of vanadium

    图  8  机械活化时间对钒渣钠化提钒的影响

    (a) 钒浸出率;(b)尾渣中残钒含量等值线图

    Figure  8.  Effect of activation time on the leaching efficiency of vanadium

    图  9  不同活化时间浸出渣粒度分布

    Figure  9.  Particle size distribution of leaching slag at different activation time

    表  1  钒渣的化学成分

    Table  1.   Main composition of vanadium slag %

    TFeMFeSiO2V2O5TiO2Cr2O3CaOP2O5
    39.351.4215.289.528.722.962.300.458
    下载: 导出CSV
  • [1] KIM W S, KIM D S, KUZNETSOV A V. Simulation of coupled turbulent flow and heat transfer in the wedge-shaped pool of a twin-roll strip casting process[J]. International Journal of Heat and Mass Transfer, 2000,43(20):3811-3822. doi: 10.1016/S0017-9310(00)00013-2
    [2] LIU J S, DING X Y, XUE X X, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021,56(7):152-160. (刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021,56(7):152-160.

    LIU J S, DING X Y, XUE X X, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160.
    [3] LI L J, CHEN D H, BAI R G, et al. High-efficiency clean vanadium-extracting technique of vanadium slag blank calcination[J]. Hebei Metallurgy, 2014(12):29-33. (李兰杰, 陈东辉, 白瑞国, 等. 钒渣空白焙烧高效清洁提钒技术[J]. 河北冶金, 2014(12):29-33.

    LI L J, CHEN D H, BAI R G, et al. High-efficiency clean vanadium-extracting technique of vanadium slag blank calcination[J]. Hebei Metallurgy, 2014(12): 29-33.
    [4] WANG C Q, LIU W H, LIU H Q, et al. Research on sintering phenomenon during calcination of vanadium slag[J]. Iron Steel Vanadium Titanium, 2013,34(6):6-11. (王春琼, 刘武汉, 刘恢前, 等. 钒渣钙化焙烧烧结现象研究[J]. 钢铁钒钛, 2013,34(6):6-11. doi: 10.7513/j.issn.1004-7638.2013.06.002

    WANG C Q, LIU W H, LIU H Q, et al. Research on sintering phenomenon during calcination of vanadium slag[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 6-11. doi: 10.7513/j.issn.1004-7638.2013.06.002
    [5] WU E H, LI J, XU Z, et al. Extraction of vanadium from high-chromium vanadium-bearing titano-magnetite concentrate pelles by oxidizing and Na-activation roasting and water leaching[J]. Chinese Journal Rare Metals, 2022,46(12):1599-1608. (吴恩辉, 李军, 徐众, 等. 高铬型钒钛铁精矿球团氧化钠化焙烧-水浸提钒研究[J]. 稀有金属, 2022,46(12):1599-1608.

    WU E H, LI J, XU Z, et al. Extraction of vanadium from high-chromium vanadium-bearing titano-magnetite concentrate pelles by oxidizing and Na-activation roasting and water leaching[J]. Chinese Journal Rare Metals, 2022, 46(12): 1599-1608.
    [6] FU Z B, JIANG L, LI M, et al. Simultaneous extraction of vanadium and chromium from Vanadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020,41(4):1-6. (付自碧, 蒋霖, 李明, 等. 钒铬渣钠化焙烧同步提取钒和铬[J]. 钢铁钒钛, 2020,41(4):1-6.

    FU Z B, JIANG L, LI M, et al. Simultaneous extraction of vanadium and chromium from Vanadium-chromium slag by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 1-6.
    [7] MA, J, MA B Z, AN Y R, et al. Recovery of vanadium from rapid-cooling converter vanadium slag by sodium roasting and water leaching[J]. JOM, 2024,76(12):7047-7059. doi: 10.1007/s11837-024-06546-x
    [8] TENG A J, XUE X X, ZHANG X F. Research on microwave roasting for sodiumizing vandalite for vanadium recovery[C]. China Metallurgical Society, Ironmaking Branch, 2017: 632-638. (滕艾均, 薛向欣, 张学飞. 钒渣钠化提钒的微波焙烧研究[C]. 中国金属学会炼铁分会, 2017: 632-638.

    TENG A J, XUE X X, ZHANG X F. Research on microwave roasting for sodiumizing vandalite for vanadium recovery[C]. China Metallurgical Society, Ironmaking Branch, 2017: 632-638.
    [9] DENG, R R, XIAO H, XIE Z M, et al. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag[J]. Chinese Journal of Chemical Engineering, 2020,28(8):2208-2213. doi: 10.1016/j.cjche.2020.03.038
    [10] LI Q W, LIU F Q, DENG X B, et al. Study on roasting Pangang converter vanadium slag with soda in laboratory[J]. Iron Steel Vanadium Titanium, 2012,33(4):7-11. (李千文, 刘丰强, 邓孝伯, 等. 攀钢转炉钒渣钠化焙烧实验室研究[J]. 钢铁钒钛, 2012,33(4):7-11. doi: 10.7513/j.issn.1004-7638.2012.04.002

    LI Q W, LIU F Q, DENG X B, et al. Study on roasting Pangang converter vanadium slag with soda in laboratory[J]. Iron Steel Vanadium Titanium, 2012, 33(4): 7-11. doi: 10.7513/j.issn.1004-7638.2012.04.002
    [11] XIANG J Y, HUANG Q Y, LÜ X W, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical & Materials Transactions B, 2017,48(5):2759-2767.
    [12] PETER B. Mechochemistry in nanoscience and minerals engineering[M]. Germany: Springer Science & Business Media, 2008: 257-292.
    [13] HUANG Q Y, XIANG J Y, PEI G S et al. Mechanical activation on extraction of vanadium from vanadium slag by calcification roasting-acid leaching process[J]. The Chinese Journal of Nonferrous Metals, 2020,30(4):858-865. (黄青云, 向俊一, 裴贵尚, 等. 机械活化强化钒渣钙化提钒工艺[J]. 中国有色金属学报, 2020,30(4):858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745

    HUANG Q Y, XIANG J Y, PEI G S et al. Mechanical activation on extraction of vanadium from vanadium slag by calcification roasting-acid leaching process[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4): 858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745
    [14] XIANG J Y. Fundamental study on the optimization of vanadium extraction from LD converter slag by calcification based process and the comprehensive utilization of tailings[D]. Chongqing: Chongqing University, 2018. (向俊一. 转炉钒渣钙化提钒工艺优化及提钒尾渣综合利用基础研究[D]. 重庆: 重庆大学, 2018.

    XIANG J Y. Fundamental study on the optimization of vanadium extraction from LD converter slag by calcification based process and the comprehensive utilization of tailings[D]. Chongqing: Chongqing University, 2018.
    [15] YAO N, XING C, HU Q W. Analysis on influencing factors of compressive strength of carbon-burdened double-layer pelleting[J]. Sintering and Pelletizing, 2021,46(6):89-94. (姚娜, 兴超, 胡启武. 内配碳双层球团抗压强度的影响因数分析[J]. 烧结球团, 2021,46(6):89-94.

    YAO N, XING C, HU Q W. Analysis on influencing factors of compressive strength of carbon-burdened double-layer pelleting[J]. Sintering and Pelletizing, 2021, 46(6): 89-94.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  49
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回