中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应变和热处理对Ti6321合金变形行为的影响

尹艳超

尹艳超. 预应变和热处理对Ti6321合金变形行为的影响[J]. 钢铁钒钛, 2025, 46(3): 45-52. doi: 10.7513/j.issn.1004-7638.2025.03.008
引用本文: 尹艳超. 预应变和热处理对Ti6321合金变形行为的影响[J]. 钢铁钒钛, 2025, 46(3): 45-52. doi: 10.7513/j.issn.1004-7638.2025.03.008
YIN Yanchao. Influence of pre-strain and heat treatment on subsequent deformation behavior of Ti6321 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 45-52. doi: 10.7513/j.issn.1004-7638.2025.03.008
Citation: YIN Yanchao. Influence of pre-strain and heat treatment on subsequent deformation behavior of Ti6321 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 45-52. doi: 10.7513/j.issn.1004-7638.2025.03.008

预应变和热处理对Ti6321合金变形行为的影响

doi: 10.7513/j.issn.1004-7638.2025.03.008
基金项目: 七二五所科技创新项目(LW230803)。
详细信息
    作者简介:

    尹艳超,男,1989年出生,河南扶沟人,本科,工程师,主要从事钛合金材料及其应用研究。E-mail:alvinyin@sina.cn

  • 中图分类号: TG146.2

Influence of pre-strain and heat treatment on subsequent deformation behavior of Ti6321 titanium alloy

  • 摘要: 对Ti6321合金进行预拉伸,研究预变形对其后续变形行为的影响;另外对预变形后Ti6321合金进行热处理,并与未处理预变形Ti6321进行了对比分析。结果表明,试样经过预拉伸后,其压缩屈服强度降低,降低幅度随着预拉伸塑性应变量的增大先增大后趋于稳定。预拉伸试样经热处理后再反向加载,其压缩屈服强度得到一定程度恢复,且高于未经热处理预拉伸试样的压缩屈服强度,压缩屈服强度回复幅度随着热处理温度升高而增大。Ti6321合金产生包申格效应的机制为微区非均匀塑性变形过程中残余应力的长程效应与位错运动过程中阻力变化的短程效应共同作用的结果,且前者为主要原因。预变形试样在热处理保温过程中位错组态发生变化,形成亚晶等使位错密度减小、位错塞积程度降低;另一方面高温下位错发生攀移,进而产生应力松弛,晶粒间的附加应力降低,微区残余应力减小,二者共同作用下使预变形态Ti6321合金反向承载能力得到回复,包申格效应减弱。
  • 图  1  试验用Ti6321合金原始组织照片

    Figure  1.  Microstructure of the as-received Ti6321 alloy

    (a) OM; (b) TEM

    图  2  试样形式及尺寸(单位:mm)

    Figure  2.  Diagram of a specimen

    图  3  预拉伸前后Ti6321合金压缩性能

    Figure  3.  Compressive properties of Ti6321 alloy before and after pre-tensile

    图  4  不同状态Ti6321合金压缩屈服强度

    Figure  4.  Compressive properties of Ti6321 alloy in different conditions

    图  5  原始态、预应变态Ti6321合金IQ + IPF图

    (a)原始态;(b)1.5%预拉伸塑性应变;(c) 5.0%预拉伸塑性应变

    Figure  5.  Morphology of IQ + IPF of Ti6321 titanium alloy in different conditions

    图  6  不同状态下Ti6321合金IQ、KAM图

    (a1)(b1)(c1)(d1)为IQ+KAM叠加图;(a2)(b2)(c2)(d2)为KAM图

    Figure  6.  Morphology of IQ, KAM of Ti6321 alloy specimens in different conditions

    图  7  预变形态Ti6321合金的TEM照片

    (a)~(c)1.5% 预拉伸塑性应变;(d)~(f)5.0% 预拉伸塑性应变

    Figure  7.  TEM images of pre-deformed Ti6321 specimens

    图  8  预变形Ti6321合金经热处理后的TEM照片

    (a)~(b)1.5% 预拉伸塑性应变 + 300 ℃热处理;(c)~(e) 1.5% 预拉伸塑性应变 + 500 ℃热处理;(f) 1.5% 预拉伸塑性应变 + 550 ℃热处理;(g) 5.0% 预拉伸塑性应变 + 500 ℃热处理;(h)~(i) 5.0% 预拉伸塑性应变 + 550 ℃热处理

    Figure  8.  TEM images of pre-deformed Ti6321 after heat treatment

    图  9  预拉伸-卸载-压缩过程中晶粒受力示意

    (a)预拉伸;(b)卸载;(c)压缩

    Figure  9.  Schematic of micro-stress on grains

    表  1  Ti6321合金板材化学成分

    Table  1.   Chemical composition of Ti6321 alloy plate %

    TiAlNbZrMoNHCOFeSi
    Bal.6.222.502.031.02<0.0050.0016<0.010.0810.0290.024
    下载: 导出CSV

    表  2  不同预应变后Ti6321合金的压缩屈服强度

    Table  2.   Compressive yield strength of the Ti6321 alloy with different pre-tensile plastic strain

    试样 预拉伸塑性应变/% 压缩屈服强度/MPa
    1 0 794
    2 0.28 769
    3 0.55 655
    4 1.20 617
    5 1.59 579
    6 2.00 566
    7 5.00 537
    8 8.29 506
    下载: 导出CSV

    表  3  预拉伸+热处理后Ti6321合金测试结果

    Table  3.   Compressive properties of pre-tensile plastic strain Ti6321 alloy after heat treatment

    预拉伸塑性应变/% 热处理温度/℃ 压缩屈服强度/MPa 比值R/%
    0 794 100
    1.2 617 77.7
    1.2 300 632 79.6
    1.2 500 727 91.6
    1.2 550 737 92.8
    5.0 537 67.6
    5.0 300 556 70.0
    5.0 500 685 86.3
    5.0 550 714 89.9
    下载: 导出CSV
  • [1] GORYNIN I V. Titanium alloy for marine application[J]. Materials Science and Engineering A, 1999,263(2):112-116. doi: 10.1016/S0921-5093(98)01180-0
    [2] SCHUTZ R W, SCATURRO M R. An overview of current and candidate titanium alloy application on U. S. navy surface ships[J]. Naval Engineers Journal, 1991(5):175-191.
    [3] ORYSHCHENKO A S, GORYNIN I V, LEONOV V P, et al. Marine titanium alloys: present and future[J]. Inorganic materials: applied research, 2015,6(6):571-579. doi: 10.1134/S2075113315060106
    [4] YU X Y, JI H T, ZHANG H, et al. Experimental and numerical investigation on the bauschinger effect during cold forming of TC4ELI alloy[J]. International Journal of Material Forming, 2022,15(2):1-10.
    [5] YIN Y C, ZHANG S F, XU Y L, et al. Influence of pre-strain on deformation behavior of TC4ELI titanium alloy[J]. Development and Application of Materials, 2023,38(1):66-72. (尹艳超, 张帅锋, 许亚利, 等. 预应变对TC4ELI钛合金变形行为的影响[J]. 材料开发与应用, 2023,38(1):66-72.

    YIN Y C, ZHANG S F, XU Y L, et al. Influence of pre-strain on deformation behavior of TC4ELI titanium alloy[J]. Development and Application of Materials, 2023, 38(1): 66-72.
    [6] HEMEN R. The bauschinger effect in 6-6-2 titanium alloy and its influence on advanced artillery projectiles[R]. Watertown: U. S. Army Materials Technology Laboratory, 1989.
    [7] DAI Q, WANG F, ZHANG J, et al. Effect of pre-strain on failure assessment of titanium pressure vessel with crack[J]. Rare Metal Materials and Engineering, 2020,49(10):3301-3308.
    [8] MAYKUTH D J. Residual stresses, stress relief, and annealing of titanium and titanium alloys[R]. Ohio: U. S. Air Force Materials Laboratory, 1968.
    [9] RAE W, RAHIMI S. Effect of stress relaxation on the evolution of residual stress during heat treatment of Ti-6Al-4V[C]. The 14th World Conference on Titanium. 2019.
    [10] CAVALLARO J L. Ti-6Al-2Cb-1Ta-0.8Mo titanium alloy as a structural material for marine applications[R]. Annapolis: U. S. Navy Marine Engineer Laboratory, 1967.
    [11] CHEN H B, LIU T M, LU L W, et al. Influence of pre-strain and heat treatment on subsequent deformation behavior of extruded AZ31 Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2015(11):3604-3610.
    [12] WANG R F, DENG W P, NIU J C, et al. Effect of plastic deformation and stress relief heat treatment on microstructure and properties of 10CrNi5MoV steel plate[J]. Development and Application of Materials, 2019,34(5):16-21,26. (王任甫, 邓晚平, 牛继承, 等. 塑性变形及消应力热处理对10CrNi5MoV钢性能与组织的影响[J]. 材料开发与应用, 2019,34(5):16-21,26.

    WANG R F, DENG W P, NIU J C, et al. Effect of plastic deformation and stress relief heat treatment on microstructure and properties of 10CrNi5MoV steel plate[J]. Development and Application of Materials, 2019, 34(5): 16-21,26.
    [13] PEIRS J, VERLEYSEN P, DEGRIECK J. Study of the dynamic bauschinger effect in Ti6Al4V by torsion experiments[J]. The European Physical Journal Conferences, 2012,26:01023. doi: 10.1051/epjconf/20122601023
    [14] PEIRS J, VERLEYSEN P, VERBEKEN K, et al. High strain rate torsion and bauschinger tests on Ti6Al4V[J]. Materials Science Forum, 2012,706-709:774-779. doi: 10.4028/www.scientific.net/MSF.706-709.774
    [15] YU X Y, ZHANG B W. Investigation on bauschinger effect of TC4ELI titanium alloy based on experiment[J]. Die and Mould Industry, 2021,47(9):6-8. (于翔宇, 张博文. TC4 ELI钛合金包申格效应试验研究[J]. 模具工业, 2021,47(9):6-8.

    YU X Y, ZHANG B W. Investigation on bauschinger effect of TC4ELI titanium alloy based on experiment[J]. Die and Mould Industry, 2021, 47(9): 6-8.
    [16] FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materials China, 2014(7):385-393. (方志刚, 刘斌, 李国明, 等. 舰船装备材料体系发展与需求分析[J]. 中国材料进展, 2014(7):385-393.

    FANG Z G, LIU B, LI G M, et al. Requirement and development analysis of warship equipment materials system[J]. Materials China, 2014(7): 385-393.
    [17] MAMUN A A, MOAT R J, KELLEHER J, et al. Origin of the bauschinger effect in a polycrystalline material[J]. Materials Science and Engineering A, 2017,707:576-584. doi: 10.1016/j.msea.2017.09.091
    [18] STOLTZ R E, PELLOUX R M. The Bauschinger effect in precipitation strengthened aluminum alloys[J]. Metallurgical Transactions A, 1976,7(8):1295-1306. doi: 10.1007/BF02658814
    [19] WANG Y F, LI C, LING X Y, et al. An overview on the bauschinger effect in metallic materials[J]. China Nuclear Science and Technology Report, 2002(0):410-423. (王延峰, 李聪, 凌绪玉等. 金属材料的包申格效应综述[J]. 中国核科技报告, 2002(0):410-423.

    WANG Y F, LI C, LING X Y, et al. An overview on the bauschinger effect in metallic materials[J]. China Nuclear Science and Technology Report, 2002(0): 410-423.
    [20] MACEWEN S R, ELLS C E, WOO O T. The bauschinger effect in Zircaloy-2[J]. Journal of Nuclear Materials, 1981,101:336-349. doi: 10.1016/0022-3115(81)90175-6
    [21] IBRAHIM K, HUSEYIN S, CHUMLYAKOV Y I, et al. The effect of twinning and slip on the bauschinger effect of hadfield steel single crystals[J]. Metallurgiacl Transactions, 2001, 32A: 695-706.
    [22] GERD L, JAMES C, WILLIAMS. Titanium[M]. Berlin: Springer-Verlag. 2007.
    [23] WILLIAMS J C, BAGGERLY R G, PATOU N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002,33:837-850.
    [24] YU W X, LÜ Y F, LI S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates[J]. Materials Science and Engineering A, 2015,639:314-319. doi: 10.1016/j.msea.2015.04.083
    [25] AMBARD A, GUÉTAZ L, LOUCHET F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K[J]. Materials Science and Engineering A, 2001, 319: 404-408.
    [26] AKHTAR A. Basal slip and twinning in α-titanium single crystals[J]. Metallurgical and Materials Transactions A, 1975,6:1105-1113. doi: 10.1007/BF02661366
    [27] ZULFIKAR H A K, WANG Z R. Bauschinger effect in a modified Zr-2.5wt% Nb pressure tube material[J]. Materials Science and Engineering A: 1993, 171(1-2): 55-63
    [28] WANG Z Q, ALEXANDRU D S, MA D, et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction: application to additive manufacturing[J]. Materials Science and Engineering A, 2017,7:585-592.
    [29] HUANG Z, YUAN W H, ZHU J J. Low temperature stress relaxation and morphology evolution of Ti-6.5Al-2Zr-1Mo-1V titanium alloys[J]. Rare Metal Materials and Engineering, 2002,51(1):83-91.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  33
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回