中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热处理温度对TA16棒材显微组织和力学性能的影响

范玉婷 彭力 李京懋 秦海旭

范玉婷, 彭力, 李京懋, 秦海旭. 不同热处理温度对TA16棒材显微组织和力学性能的影响[J]. 钢铁钒钛, 2025, 46(3): 53-59. doi: 10.7513/j.issn.1004-7638.2025.03.009
引用本文: 范玉婷, 彭力, 李京懋, 秦海旭. 不同热处理温度对TA16棒材显微组织和力学性能的影响[J]. 钢铁钒钛, 2025, 46(3): 53-59. doi: 10.7513/j.issn.1004-7638.2025.03.009
FAN Yuting, PENG Li, LI Jingmao, QIN Haixu. Microstructure and mechanical properties of TA16 bar with different heat treatment temperatures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 53-59. doi: 10.7513/j.issn.1004-7638.2025.03.009
Citation: FAN Yuting, PENG Li, LI Jingmao, QIN Haixu. Microstructure and mechanical properties of TA16 bar with different heat treatment temperatures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 53-59. doi: 10.7513/j.issn.1004-7638.2025.03.009

不同热处理温度对TA16棒材显微组织和力学性能的影响

doi: 10.7513/j.issn.1004-7638.2025.03.009
详细信息
    作者简介:

    范玉婷,1994年出生,女,新疆昌吉人,硕士,从事钛合金产品开发研究工作,E-mail:2935021981@qq.com

    通讯作者:

    彭力,1990年出生,男,四川遂宁人,博士,从事钛合金产品开发,E-mail:listen0812@163.com

  • 中图分类号: TF823,TG142

Microstructure and mechanical properties of TA16 bar with different heat treatment temperatures

  • 摘要: 研究了热处理温度对Ø230 mm的TA16棒材微观组织、织构和力学性能的影响。结果表明:锻棒横纵向样原始组织为拉长的变形等轴组织,大晶粒内部分布着孪晶,横向样抗拉强度、屈服强度高于纵向样;随着退火温度的升高,横纵向样组织由拉长的变形晶粒逐渐趋于等轴化;原始锻态{10-12}拉伸孪晶含量最多,且随着热处理温度的升高,{10-12}拉伸孪晶在逐渐减少,当热处理温度升高至800 ℃时,孪晶完全消失,再结晶晶粒逐渐长大;原始锻态织构主要集中在{0001}//RD取向,与ND有一定夹角,当热处理温度升高至750 ℃时,织构强度降低,织构类型发生变化,集中在{0001}//ND取向,且与RD有一定夹角;且随着热处理温度的升高,横纵向样的抗拉强度、屈服强度、屈强比整体均呈下降趋势,延伸率逐渐升高。
  • 图  1  TA16合金Ø230 mm的棒材的锻态组织

    横向:(a)边部, (b)R/2, (c)中心; 纵向:(d)边部, (e)R/2, (f)中心

    Figure  1.  Forged structure of Ø230 mm TA16 alloy bar

    图  2  TA16锻棒在不同热处理温度下的横向样金相显微组织

    Figure  2.  Metallographic microstructure of horizontal TA16 alloy bar sample under different heat treatment

    (a) 650 ℃/1 h; (b) 700 ℃/1 h; (c) 750 ℃/1 h; (d) 800 ℃/1 h

    图  3  TA16锻棒在不同热处理温度下的纵向样金相显微组织

    Figure  3.  Metallographic microstructure of vertical TA16 alloy bar sample under different heat treatment

    (a) 650 ℃/1 h; (b)700 ℃/1 h; (c)750 ℃/1 h; (d)800 ℃/1 h

    图  4  不同热处理温度IPF图

    Figure  4.  IPF maps at different heat treatment temperature

    (a) 原始锻态; (b) 650 ℃; (c) 700 ℃; (d)750 ℃

    图  5  不同热处理温度孪晶分布

    Figure  5.  Twin crystals distribution maps at different heat treatment temperatures

    (a) 原始锻态; (b) 650 ℃; (c) 700 ℃; (d) 750 ℃

    图  6  不同热处理温度极图

    Figure  6.  PFs at different heat treatment temperatures

    (a) 原始锻态; (b)650 ℃; (c)700 ℃; (d)750 ℃

    图  7  不同热处理温度对室温力学性能影响

    (a)抗拉强度;(b)屈服强度;(c)延伸率;(d)屈强比

    Figure  7.  Effect of heat treatment temperature on tensile properties at room-temperature

    图  8  TA16原始锻态基面<a>滑移系施密特分布及施密特因子分布

    (a) TD; (b) RD; (c)不同方向的施密特因子分布

    Figure  8.  SF and Schmid factor distribution maps of <a> slip system on the original forged base plane of TA16

    表  1  TA16钛合金化学成分

    Table  1.   Chemical compositions of TA16 alloy %

    部位AlZrONHFeC
    2.272.260.110.00580.00110.0790.0085
    2.212.340.110.00300.00120.0890.0073
    2.142.220.110.00340.000880.0850.013
    下载: 导出CSV

    表  2  热处理制度

    Table  2.   Heat treatment processes

    工艺编号热处理制度
    温度/℃时长/h方式
    16501AC
    27001AC
    37501AC
    48001AC
    下载: 导出CSV
  • [1] CHEN W, XIAO L, SUN Q Y, et al. Effect of the initial grain size on grain refinement in Ti-2Al-2.5Zr alloy subjected to multi-impact process[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012,554:86-94. doi: 10.1016/j.msea.2012.06.019
    [2] CHEN W, XIAO L, SUN Q, et al. Effect of the initial grain size on grain refinement in Ti-2Al-2.5Zr alloy subjected to multi-impact process[J]. Materials Science & Engineering A, 2012, 554: 86-94.
    [3] TANG Z P, PENG C F, HE X. Effects of hydrogen on fatigue crack propagation rate of Ti-2Al-2.5Zr titanium alloy[J]. Nuclear Power Engineering, 2003,24(6):555-558.
    [4] XIAO H E, BAO S, JUN Y, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002(27).
    [5] WANG S, LI P, WU Y, et al. Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling[J]. International Journal of Fatigue, 2022(161): 106890.
    [6] WANG S, NING Z, LI P, et al. Study on the crack nucleation mechanism of Ti-2Al-2.5 Zr alloy in low cycle fatigue: Quasi in-situ experiments and crystal plasticity simulation[J]. International Journal of Plasticity, 2023,165:103604. doi: 10.1016/j.ijplas.2023.103604
    [7] LI H, YU J, JIA W, et al. Investigation on the plastic anisotropic deformation behavior of Α-phase titanium alloy Ti-2Al-2.5Zr: Mechanism analysis and crystal plasticity modeling[J]. SSRN, 2024.
    [8] XIE L J, ZHU S P. Effect of extrusion speed on hot extrusion forming of TA16 titanium alloy tube blank[J]. World Nonferrous Metals, 2021(19):132-133. (谢林均, 朱栓平. 挤压速度对TA16钛合金管坯热挤压成型的影响[J]. 世界有色金属, 2021(19):132-133. doi: 10.3969/j.issn.1002-5065.2021.19.065

    XIE L J, ZHU S P. Effect of extrusion speed on hot extrusion forming of TA16 titanium alloy tube blank[J]. World Nonferrous Metals, 2021(19): 132-133. doi: 10.3969/j.issn.1002-5065.2021.19.065
    [9] ZHANG Y F, YU Z T, YU S, et al. Effects of cold rolling and heat treatment on microstructure and properties of TA16 titanium alloy tubes[J]. Titanium Industry Progress, 2012,29(3):11-13. (张亚峰, 于振涛, 余森, 等. 冷轧及热处理对TA16钛合金管材组织与性能的影响[J]. 钛工业进展, 2012,29(3):11-13. doi: 10.3969/j.issn.1009-9964.2012.03.003

    ZHANG Y F, YU Z T, YU S, et al. Effects of cold rolling and heat treatment on microstructure and properties of TA16 titanium alloy tubes[J]. Titanium Industry Progress, 2012, 29(3): 11-13. doi: 10.3969/j.issn.1009-9964.2012.03.003
    [10] WU J, WANG L, LIU X. Evolution of microstructure and microtexture in Ti-2A1-2.5Zr during one pass cold Pilgering[J]. Rare Metal Materials and Engineering, 2022,51(4):1145-1151. (吴军, 王理, 刘肖, 等. Ti-2Al-2.5Zr单道次皮尔格轧制过程中显微组织和织构的演化(英文)[J]. 稀有金属材料与工程, 2022,51(4):1145-1151.

    WU J, WANG L, LIU X. Evolution of microstructure and microtexture in Ti-2A1-2.5Zr during one pass cold Pilgering[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1145-1151.
    [11] LUO Q, WANG L, LIU S W. Effects of hydrogen on the performance of the TA16 titanium alloy[J]. Ordnance Material Science and Engineering, 2011,34(2):51-54. (罗强, 王理, 刘思维. 氢对TA16钛合金性能影响研究[J]. 兵器材料科学与工程, 2011,34(2):51-54. doi: 10.3969/j.issn.1004-244X.2011.02.015

    LUO Q, WANG L, LIU S W. Effects of hydrogen on the performance of the TA16 titanium alloy[J]. Ordnance Material Science and Engineering, 2011, 34(2): 51-54. doi: 10.3969/j.issn.1004-244X.2011.02.015
    [12] HE X, SHEN B L, YUE J, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002,027(12):10-13. (何晓, 沈保罗, 岳俊, 等. 氢对Ti-2Al-2.5Zr钛合金疲劳性能的影响[J]. 金属热处理, 2002,027(12):10-13. doi: 10.3969/j.issn.0254-6051.2002.12.004

    HE X, SHEN B L, YUE J, et al. Effects of hydrogen on fatigue property for Ti-2Al-2.5Zr titanium alloy[J]. Heat Treatment of Metals, 2002, 027(12): 10-13. doi: 10.3969/j.issn.0254-6051.2002.12.004
    [13] ZHANG C, LI B, WU J, et al. Effect of surface nanocrystallization on thermomechanical fatigue behavior of Ti-2Al-2.5Zr alloy tube[J]. Nuclear Engineering and Design, 2024,419:112976. doi: 10.1016/j.nucengdes.2024.112976
    [14] CHEN G, CHU T, CUI Y, et al. Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5Zr alloy tube[J]. International Journal of Fatigue, 2022,158:106735. doi: 10.1016/j.ijfatigue.2022.106735
    [15] CHEN S C, WANG L, LI Y L. Effect of heat treatment on microstructure and mechanical properties of TA16 alloy rods[J]. Heat Treatment of Metals, 2018,43(12):195-199. (陈胜川, 王璐, 李永林, 等. 热处理对TA16合金棒材组织和力学性能的影响[J]. 金属热处理, 2018,43(12):195-199.

    CHEN S C, WANG L, LI Y L. Effect of heat treatment on microstructure and mechanical properties of TA16 alloy rods[J]. Heat Treatment of Metals, 2018, 43(12): 195-199.
    [16] CHEN H Q, ZHAO X D, CHAI Y S, et al. Recovery and recrystallization during thermo-mechanical processing of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si alloy[C]//Materials Science Forum. Trans Tech Publications Ltd, 2014, 783: 549-555.
    [17] YANG G, SUN L J, ZHANG L N, et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009,21(2):39-43. (杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009,21(2):39-43.

    YANG G, SUN L J, ZHANG L N, et al. Annihilation of deformation twins and formation of annealing twins[J]. Journal of Iron and Steel Research, 2009, 21(2): 39-43.
    [18] CHEN C, HAN D S, SONG Y T, et al. Thermal stability of deformation twins in cryogenic rolled CP-Ti[J]. Materials Characterization, 2023,196:112587. doi: 10.1016/j.matchar.2022.112587
    [19] YAN C K, QU S J, FENG A H, et al. Recent advances of deformation twins in titanium and titanium alloys[J]. Chinese Journal of Rare Metals, 2019,43(5):449-460. (闫辰侃, 曲寿江, 冯艾寒, 等. 钛及钛合金形变孪晶的研究进展[J]. 稀有金属, 2019,43(5):449-460.

    YAN C K, QU S J, FENG A H, et al. Recent advances of deformation twins in titanium and titanium alloys[J]. Chinese Journal of Rare Metals, 2019, 43(5): 449-460.
    [20] XU Y L, WU X W, LAI M J, et al. Research progress on titanium alloys deformation textures and their influences[J]. Foundry Technology, 2022,43(12):1021-1031. (许亚利, 吴小文, 赖敏杰, 等. 钛合金变形织构及其影响研究进展[J]. 铸造技术, 2022,43(12):1021-1031.

    XU Y L, WU X W, LAI M J, et al. Research progress on titanium alloys deformation textures and their influences[J]. Foundry Technology, 2022, 43(12): 1021-1031.
    [21] BIELER T R, SEMIATIN S L. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V[J]. International Journal of Plasticity, 2002,18(9):1165-1189. doi: 10.1016/S0749-6419(01)00057-2
    [22] UTA E, GEY N, BOCHER P, et al. Texture heterogeneities in αps titanium forging analysed by EBSD-relation to fatigue crack propagation[J]. Journal of microscopy, 2009,233(3):451-459. doi: 10.1111/j.1365-2818.2009.03141.x
    [23] LÜTJERING G, WILLIAMS J C. Titanium[M]. 2nd edition. Berlin: Springer-Verlag, 2007.
    [24] ROY S, SUWAS S. Unique texture transition during sub β-transus annealing of warm-rolled Ti-6Al-4V alloy: Role of orientation dependent spheroidization[J]. Scripta Materialia, 2018, 154:1-7.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回