中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火对室温与液氮温度轧制后CrCoNi中熵合金组织与力学性能影响

陈今良 金学元 易健宏

陈今良, 金学元, 易健宏. 退火对室温与液氮温度轧制后CrCoNi中熵合金组织与力学性能影响[J]. 钢铁钒钛, 2025, 46(3): 167-173, 204. doi: 10.7513/j.issn.1004-7638.2025.03.023
引用本文: 陈今良, 金学元, 易健宏. 退火对室温与液氮温度轧制后CrCoNi中熵合金组织与力学性能影响[J]. 钢铁钒钛, 2025, 46(3): 167-173, 204. doi: 10.7513/j.issn.1004-7638.2025.03.023
CHEN Jinliang, JIN Xueyuan, YI Jianhong. Effect of annealing on microstructure and mechanical properties of CrCoNi medium entropy alloy rolled at room temperature and liquid nitrogen temperature[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 167-173, 204. doi: 10.7513/j.issn.1004-7638.2025.03.023
Citation: CHEN Jinliang, JIN Xueyuan, YI Jianhong. Effect of annealing on microstructure and mechanical properties of CrCoNi medium entropy alloy rolled at room temperature and liquid nitrogen temperature[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 167-173, 204. doi: 10.7513/j.issn.1004-7638.2025.03.023

退火对室温与液氮温度轧制后CrCoNi中熵合金组织与力学性能影响

doi: 10.7513/j.issn.1004-7638.2025.03.023
基金项目: 攀枝花市科技项目(2022ZD-G-14)。
详细信息
    作者简介:

    陈今良,1983年出生,男,湖南隆回人,博士,主要从事高熵合金材料研究,E-mail:chenjinliang@126.com

  • 中图分类号: TF76, TG174.4

Effect of annealing on microstructure and mechanical properties of CrCoNi medium entropy alloy rolled at room temperature and liquid nitrogen temperature

  • 摘要: 将铸态CrCoNi中熵合金分别在室温与液氮温度下轧制变形,随后分别采用中低温短时间退火工艺处理,对比室温轧制+退火、液氮温度轧制+退火对合金强塑性改善差异。结果表明:当退火参数为700 ℃/30 min时,两种轧制条件下合金的屈服强度均远高于1000 MPa,且LNTR-700 ℃试样的断裂延伸率维持在26.2%,远高于现有文献报道中同等参数退火态的强度和塑性值;当退火参数为800 ℃/30 min时,RTR-800 ℃合金的抗拉强度为987 MPa,断裂延伸率为37.2%,而LNTR-800 ℃试样的抗拉强度为947 MPa,断裂延伸率达到58%。即相比于室温轧制+退火,采用液氮温度轧制+退火工艺,对CrCoNi中熵合金的强塑性改善更为显著,原因是液氮温度轧制+退火后晶粒更为细小,形成更为明显的异质晶粒结构。
  • 图  1  RTR、LNTR试样相应退火后CrCoNi中熵合金XRD谱

    (a)RTR及相应退火态;(b)LNTR及相应退火态

    Figure  1.  XRD patterns of CrCoNi alloy after corresponding annealing of RTR and LNTR samples

    图  2  室温与液氮温度轧制及相应退火态金相组织

    (a)室温轧制态;(b)液氮温度轧制态;(c)(d)650 ℃/30 min退火;(e)(f)700 ℃/30 min退火;(g)(h)800 ℃/30 min退火

    Figure  2.  Microstructure of annealed alloys after rolling at room temperature and liquid nitrogen temperature

    图  3  CrCoNi中熵合金在800 ℃退火后晶粒取向分布

    Figure  3.  Grain orientation distribution of CrCoNi alloy after annealing at 800 ℃

    (a)RTR-800 ℃;(b)LNTR-800 ℃

    图  4  CrCoNi中熵合金在800 ℃退火后再结晶晶粒分布与比例

    (a)RTR-800 ℃试样;(b)LNTR-800 ℃试样;(c)再结晶比例

    Figure  4.  Recrystallization grain distribution and ratio of CrCoNi alloy after annealing at 800 ℃

    图  5  CrCoNi中熵合金在800 ℃退火后GND位错分布KAM图

    Figure  5.  KAM map of GND dislocation distribution of CrCoNi alloy after annealing at 800 ℃

    (a)RTR-800 ℃;(b)LNTR-800 ℃

    图  6  CrCoNi中熵合金退火后工程应力应变曲线

    (a)室温轧制后;(b)液氮温度轧制后

    Figure  6.  Engineering stress-strain curves of CrCoNi alloy rolling annealing

    图  7  CrCoNi中熵合金退火后真实应力应变曲线及加工硬化率曲线

    (a)室温轧制后;(b)液氮温度轧制后

    Figure  7.  True stress-strain curve and work-hardening rate curves of CrCoNi alloy annealing

    图  8  CrCoNi中熵合金退火后断口形貌

    Figure  8.  Fracture morphology of CrCoNi alloy after annealing

    (a) RTR-650 ℃;(b) LNTR-650 ℃;(c) RTR-700 ℃;(d) LNTR-700 ℃;(e) RTR-800 ℃;(f) LNTR-800 ℃

  • [1] YEH J, CHEN S, LIN S. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6:299-303. doi: 10.1002/adem.200300567
    [2] CANTOR B, CHANG I T H, KNIGHT P. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004,375:213-218.
    [3] HSU Y J, CHIANG W C, WU J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics, 2005,92(1):112-117. doi: 10.1016/j.matchemphys.2005.01.001
    [4] ZHANG W, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Science China Materials, 2018,61(1):2-22. doi: 10.1007/s40843-017-9195-8
    [5] GAO M C, YEH J W, LIAW P K, et al. High-entropy alloys[J]. Cham: Springer International Publishing, 2016.
    [6] ZHANG Y. High-entropy materials[J]. Springer Nature Singapore Pte Ltd, 2019,2:215-232.
    [7] MIAHRA R S, HARIDAS R S, AGRAWAL P. High entropy alloys – tunability of deformation mechanisms through integration of compositional and microstructural domains[J]. Materials Science and Engineering: A, 2021,812:141085. doi: 10.1016/j.msea.2021.141085
    [8] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001
    [9] YEH J. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013,65(12):1759-1771. doi: 10.1007/s11837-013-0761-6
    [10] TSAI K Y, TSAI M H, YEH J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys[J]. Acta Materialia, 2013,61(13):4887-4897. doi: 10.1016/j.actamat.2013.04.058
    [11] SLONE C E, MIAO J, GEORGE E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures[J]. Acta Materialia, 2019,165:496-507. doi: 10.1016/j.actamat.2018.12.015
    [12] WU Z, BEI H, PHARR G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014, 81: 428.
    [13] SONG Li Y, WANG Y F, WANG M S, et al. Microstructure and mechanical behavior of CrCoNi medium entropy alloys in 1000 MPa grade[J]. Joural of Aeronautical Materials, 2020,40(4):62-70. (宋凌云, 王艳飞, 王明赛, 等. 1000 MPa级CrCoNi中熵合金的微观组织和力学行为[J]. 航空材料学报, 2020,40(4):62-70.

    SONG Li Y, WANG Y F, WANG M S, et al. Microstructure and mechanical behavior of CrCoNi medium entropy alloys in 1000 MPa grade[J]. Joural of Aeronautical Materials, 2020, 40(4): 62-70.
    [14] PRAVEEN S, BAE J W, ASGHARI Rad P, et al. Ultra-high tensile strength nanocrystalline CoCrNi equiatomic medium entropy alloy processed by high-pressure torsion[J]. Materials Science and Engineering: A, 2018,735:394-397. doi: 10.1016/j.msea.2018.08.079
    [15] SCHNEIDER M, GEORGE E P, MANESCAU T J, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy[J]. International Journal of Plasticity, 2020,124:155-169. doi: 10.1016/j.ijplas.2019.08.009
    [16] LIANG Y, YANG X, MING K. et al. In situ observation of transmission and reflection of dislocations at twin boundary in CoCrNi alloys[J]. Science China Technological Sciences volume, 2021,64:407-413. doi: 10.1007/s11431-019-1517-8
    [17] LAPLANCHE G, KOSTKA A, REINHART C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia, 2017,128:292-303. doi: 10.1016/j.actamat.2017.02.036
  • 加载中
图(8)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  61
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回