中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2300 MPa级含钒低合金钢超细组织制备及性能研究

龙威 邝振越 李国阳 吴桂林 陈文雄 蒋琪

龙威, 邝振越, 李国阳, 吴桂林, 陈文雄, 蒋琪. 2300 MPa级含钒低合金钢超细组织制备及性能研究[J]. 钢铁钒钛, 2025, 46(3): 187-194. doi: 10.7513/j.issn.1004-7638.2025.03.026
引用本文: 龙威, 邝振越, 李国阳, 吴桂林, 陈文雄, 蒋琪. 2300 MPa级含钒低合金钢超细组织制备及性能研究[J]. 钢铁钒钛, 2025, 46(3): 187-194. doi: 10.7513/j.issn.1004-7638.2025.03.026
LONG Wei, KUANG Zhenyue, LI Guoyang, WU Guilin, CHEN Wenxiong, JIANG Qi. 2300 MPa grade vanadium-containing low alloyed steel: ultrafine microstructure preparation and performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 187-194. doi: 10.7513/j.issn.1004-7638.2025.03.026
Citation: LONG Wei, KUANG Zhenyue, LI Guoyang, WU Guilin, CHEN Wenxiong, JIANG Qi. 2300 MPa grade vanadium-containing low alloyed steel: ultrafine microstructure preparation and performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 187-194. doi: 10.7513/j.issn.1004-7638.2025.03.026

2300 MPa级含钒低合金钢超细组织制备及性能研究

doi: 10.7513/j.issn.1004-7638.2025.03.026
详细信息
    作者简介:

    龙威,2000年出生,男,河南安阳人,硕士研究生,研究方向:超高强度钢开发研究,E-mail:15936484875@163.com

    通讯作者:

    吴桂林,1974年出生,男,河南信阳人,博士,教授,研究方向:超高强度钢、高性能钢铁材料研究,E-mail:guilinwu@ustb.edu.cn

  • 中图分类号: TF76,TG142

2300 MPa grade vanadium-containing low alloyed steel: ultrafine microstructure preparation and performance

  • 摘要: 通过常规热轧和高温退火+冷轧制备了两种不同的初始组织,研究了初始组织对奥氏体化淬火后微观组织和力学性能的影响规律。结果表明,常规热轧样品淬火组织较为粗大,而高温退火+冷轧由于在淬火前引入了更多的晶界、更高密度的渗碳体、VC和位错缺陷,实现了淬火组织的显著细化。热轧样品和冷轧样品均可以实现较高的强度和塑性匹配,但冷轧样品由于更为细化的组织,其强度和塑性更为优异。冷轧样品可以在实现2384 MPa超高抗拉强度的同时获得14.0%的超高总伸长率,强塑积可达到33.4 GPa·%。
  • 图  1  Thermal-Calc热力学平衡相图

    Figure  1.  Equilibrium thermodynamic phase diagrams predicated by Thermo-Calc

    图  2  试验钢的制备工艺流程

    Figure  2.  Preparation process of experimental steel

    图  3  轧制后微观组织

    Figure  3.  Microstructure of steel after rolling

    (a)RZ;(b)LZ

    图  4  淬回火后微观组织

    (a) RZ低倍组织;(b) LZ低倍组织;(c) RZ高倍组织;(d) LZ高倍组织

    Figure  4.  Microstructure of steel after quenching and tempering

    图  5  EDS面扫结果

    (a)面扫选区位置;(b)~(h)元素分布

    Figure  5.  EDS maping scan results of experimental steel

    图  6  试验钢室温力学性能

    (a)工程应力-应变曲线;(b)加工硬化曲线;(c)文献对比结果[3,10-19]

    Figure  6.  Mechanical properties of experimental steel tested at room temperature

    图  7  试验钢的断口形貌

    (a)RZ低倍图;(b)RZ高倍图;(c)LZ低倍图;(d) LZ高倍图

    Figure  7.  Fracture morphology of experimental steel

    图  8  试验钢的KAM图

    Figure  8.  KAM diagram of experimental steel

    (a) RZ;(b) LZ

    图  9  试验钢IPF图和马氏体块尺寸分布直方图

    (a) RZ-IPF;(b) LZ-IPF;(c) RZ马氏体块尺寸分布直方图;(d) LZ马氏体块尺寸分布直方图

    Figure  9.  IPF diagram of experimental steel and histogram of martensite block size distribution

    图  10  试验钢X-射线衍射图谱

    Figure  10.  X-ray diffraction pattern of experimental steel

    图  11  试验钢组织演变示意

    Figure  11.  Schematic diagram of microstructure evolution of experimental steel

    表  1  试验钢的成分

    Table  1.   Chemical composition of experimental steel %

    CSiMnNiCrMoVFe
    0.531.440.441.790.840.510.30Bal.
    下载: 导出CSV

    表  2  试验钢的力学性能

    Table  2.   Mechanical properties of experimental steel

    样品屈服强度/MPa抗拉强度/MPa均匀伸长率/%总伸长率/%强塑积/(GPa·%)
    RZ175723296.19.722.6
    LZ182323848.214.033.4
    下载: 导出CSV
  • [1] LIU S, CHEN H Q, CAO M, et al. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. Iron Steel Vanadium Titanium, 2023,44(6):133-138. (刘爽, 陈慧琴, 曹苗, 等. 1800MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023,44(6):133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019

    LIU S, CHEN H Q, CAO M, et al. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
    [2] QIN S, LIU Y, HAO Q, et al. The mechanism of high ductility for novel high-carbon quenching-partitioning-tempering martensitic steel[J]. Metallurgical and Materials Transactions A, 2015,46(9):4047-4055. doi: 10.1007/s11661-015-3021-2
    [3] SUN J, GUO S, ZHAO S, et al. Improving strength of cold-drawn wire by martensitic transformation in a 0.65wt% C low-alloy steel[J]. Materials Science and Engineering: A, 2020,790(14):139719.
    [4] HUANG M X, HE B B. Alloy design by dislocation engineering[J]. Journal of materials science & technology, 2018,34(3):417-420.
    [5] SAEGLITZ M, KRAUSS G. Deformation, fracture, and mechanical properties of low-temperature-tempered martensite in SAE 43xx steels[J]. Metallurgical and Materials Transactions A, 1997,28(2):377-387. doi: 10.1007/s11661-997-0139-x
    [6] LIU F, CHEN K, KANG C, et al. Effects of V-Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times[J]. Journal of Materials Research and Technology, 2022,19:779-793. doi: 10.1016/j.jmrt.2022.05.043
    [7] HIDALGO J, SANTOFIMIA M J. Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite[J]. Metallurgical and Materials Transactions A, 2016,47(11):5288-5301. doi: 10.1007/s11661-016-3525-4
    [8] WANG Y, SUN J, JIANG T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility[J]. Acta Materialia, 2018,158:247-256. doi: 10.1016/j.actamat.2018.07.060
    [9] WANG M L, CHANG H. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022,42(6):65-71. (王美玲, 常海. 初始组织对Mg-8Gd-2Y-0.5Zr合金蠕变性能的影响[J]. 航空材料学报, 2022,42(6):65-71. doi: 10.11868/j.issn.1005-5053.2020.000172

    WANG M L, CHANG H. Effects of initial microstructure on creep properties of Mg-8Gd-2Y-0.5Zr alloys[J]. Journal of Aeronautical Materials, 2022, 42(6): 65-71. doi: 10.11868/j.issn.1005-5053.2020.000172
    [10] LIU Z, YANG Z, WANG X, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. Journal of Alloys and Compounds, 2022,928:167135. doi: 10.1016/j.jallcom.2022.167135
    [11] KIM B, BOUCARD E, SOURMAIL T, et al. The influence of silicon in tempered martensite: Understanding the microstructure-properties relationship in 0.5-0.6 wt. % C steels[J]. Acta Materialia, 2014,68:169-178. doi: 10.1016/j.actamat.2014.01.039
    [12] LIU T, CAO Z, WANG H, et al. A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations[J]. Scripta Materialia, 2020,178:285-289. doi: 10.1016/j.scriptamat.2019.11.045
    [13] LIU F, LIN X, SONG M, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015,621:35-41. doi: 10.1016/j.jallcom.2014.09.111
    [14] YANG B, HE Q, WANG H, et al. Achieving an extra-high-strength yet ductile steel by synergistic effects of TRIP and maraging[J]. Materials Research Letters, 2023,11(7):578-585. doi: 10.1080/21663831.2023.2194910
    [15] CHENG Z, LIU J, LIU G, et al. Enhancement of strength-ductility trade-off in a 2000 MPa grade press-hardened steel via refined martensite with stable high-density cementite[J]. Journal of Materials Research and Technology, 2023,27:664-680. doi: 10.1016/j.jmrt.2023.09.295
    [16] CHEN K, JIANG Z, LIU F, et al. Enhanced mechanical properties by retained austenite in medium-carbon Si-rich microalloyed steel treated by quenching-tempering, austempering and austempering-tempering processes[J]. Materials Science and Engineering: A, 2020,790:139742. doi: 10.1016/j.msea.2020.139742
    [17] WANG J, WANG S, LI W, et al. Ultrastrong and ductile additively-manufactured medium-carbon steel via modulating austenite stability[J]. Scripta Materialia, 2024,239:115780. doi: 10.1016/j.scriptamat.2023.115780
    [18] WANG S, XI X, ZHAO Y, et al. Microstructures and mechanical properties of an ultrahigh-strength and ductile medium-carbon high-silicon spring steel[J]. Steel Research International, 2023,94(1):2200149. doi: 10.1002/srin.202200149
    [19] SUNIL S, KAPOOR R, SARKAR S K, et al. Ultra-high strength steel made from AISI 304L using a novel thermo-mechanical processing technique[J]. Acta Materialia, 2021,221:117379. doi: 10.1016/j.actamat.2021.117379
    [20] WANG J, EL-FALLAH G M A M, WANG Z, et al. Strength improvement over 2 GPa and austenite grain ultra-refinement in a low carbon martensite steel achieved by ultra-rapid heating and quenching[J]. Materials Science and Engineering: A, 2023,884:145538. doi: 10.1016/j.msea.2023.145538
    [21] YANG G, SUN X, LI Z, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials & Design, 2013,50:102-107.
    [22] SUN J, LIU Y, ZHU Y, et al. Super-strong dislocation-structured high-carbon martensite steel[J]. Scientific Reports, 2017,7(1):6596. doi: 10.1038/s41598-017-06971-w
    [23] Gao B, WANG L, LIU Y, et al. Achieving ultrahigh strength by tuning the hierarchical structure of low-carbon martensitic steel[J]. Materials Science and Engineering: A, 2023,881:145370. doi: 10.1016/j.msea.2023.145370
    [24] ZHAO L, QIAN L, ZHOU Q, et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials & Design, 2019,183:108123.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  51
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回