中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展行为研究

晁龙 秦晨 陈凡 曹文红 黄国明 夏明 周昌玉 贺小华

晁龙, 秦晨, 陈凡, 曹文红, 黄国明, 夏明, 周昌玉, 贺小华. 4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展行为研究[J]. 钢铁钒钛, 2025, 46(3): 195-204. doi: 10.7513/j.issn.1004-7638.2025.03.027
引用本文: 晁龙, 秦晨, 陈凡, 曹文红, 黄国明, 夏明, 周昌玉, 贺小华. 4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展行为研究[J]. 钢铁钒钛, 2025, 46(3): 195-204. doi: 10.7513/j.issn.1004-7638.2025.03.027
CHAO Long, QIN Chen, CHEN Fan, CAO Wenhong, HUANG Guoming, XIA Ming, ZHOU Changyu, HE Xiaohua. Investigation on fatigue crack growth behavior of mixed mode Ⅰ-Ⅱ crack in 4130X steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 195-204. doi: 10.7513/j.issn.1004-7638.2025.03.027
Citation: CHAO Long, QIN Chen, CHEN Fan, CAO Wenhong, HUANG Guoming, XIA Ming, ZHOU Changyu, HE Xiaohua. Investigation on fatigue crack growth behavior of mixed mode Ⅰ-Ⅱ crack in 4130X steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(3): 195-204. doi: 10.7513/j.issn.1004-7638.2025.03.027

4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展行为研究

doi: 10.7513/j.issn.1004-7638.2025.03.027
基金项目: 江苏省研究生科研与实践创新计划项目(院级)(JXSS-029)。
详细信息
    作者简介:

    晁龙,2000年出生,男,安徽宿州人,硕士研究生,主要从事过程设备结构与强度方面的研究,E-mail:chaolong0106@163.com

    通讯作者:

    贺小华,1965年出生,女,教授,主要从事过程设备结构强度及结构完整性研究工作,E-mail:xh_he@njtech.edu.cn

  • 中图分类号: TF76,TG142

Investigation on fatigue crack growth behavior of mixed mode Ⅰ-Ⅱ crack in 4130X steel

  • 摘要: 为探究4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展规律,采用紧凑拉伸剪切(CTS)试样,开展不同加载角度、应力比下的试验及有限元分析(FEM)。结果表明:裂纹扩展路径不受应力比R的影响,随加载角度β的增大产生较大的偏转角度,起裂扩展角符合最大周向应力(MTS)准则;疲劳裂纹扩展速率(FCGR)随应力比R的增大而增快,随着加载角度β的增加而降低;裂纹尖端的塑性区形态会随加载角度而发生变化,塑性应变能在扩展过程中逐渐累积;断口形貌特征表明,应力比R和加载角度β会对断口处的疲劳辉纹以及二次裂纹产生明显的影响。
  • 图  1  CTS试样尺寸(单位:mm)

    Figure  1.  Schematic drawing of the CTS specimen

    图  2  CTS系统及测量装置

    Figure  2.  CTS system and test device

    图  3  CTS系统

    (a) CTS模型;(b) 裂纹路径设置;(c) 裂尖网格

    Figure  3.  System of CTS

    图  4  等效应力与等效塑性应变关系

    Figure  4.  Relationship between equivalent yield stress and equivalent plastic strain

    图  5  Ⅰ-Ⅱ复合型疲劳裂纹扩展路径示意

    Figure  5.  Schematic diagram of FCG path for mixed mode Ⅰ-Ⅱ crack

    图  6  不同应力比及加载角度下的裂纹扩展路径

    Figure  6.  FCG path diagram at different loading angles and load ratios

    图  7  不同裂纹长度及加载角度下的应力强度因子

    Figure  7.  SIF at diverse loading angle under different length of crack

    (a) K;(b) K

    图  8  不同加载角度下K的占比

    Figure  8.  Percentage of K at different loading angles

    图  9  裂纹起裂角的试验值与拟合值、MTS准则预测值

    Figure  9.  Comparison of measured crack initiation angle with the fitting value and the predicted value by MTS criterion

    图  10  不同应力比及加载角度下∆α-N曲线

    Figure  10.  α-N curves at different loading angles and different ratios

    (a)R=0.1 ;(b)R=0.3; (c)R=0.5

    图  11  不同应力比下dα/dN-∆Keq关系曲线

    Figure  11.  dα/dN-∆Keq diagram at different load ratios

    (a) β=0°;(b) β=30°;(c) β=60°

    图  12  不同加载角度下dα/dN-∆Keq关系曲线

    Figure  12.  dα/dN-∆Keq diagram at different loading angles

    (a) R=0.1;(b) R=0.3; (c) R=0.5

    图  13  裂纹尖端应力-应变迟滞回线

    Figure  13.  Cyclic stress–strain curves at crack tip

    (a) β=30°;(b) R=0.3

    图  14  R=0.1下不同加载角度下裂尖单调塑性区形态及演化

    Figure  14.  Morphology of monotonic plastic zones under various β at R = 0.1

    图  15  R=0.1下不同加载角度下Von Mises应力场演化

    Figure  15.  The Evolution of Von Mises stress field at different loading angles of R=0.1

    (a) β=0°;(b) β=30°;(c) β=60°

    图  16  不同应力比及加载角度下裂尖等效塑性应变曲线

    Figure  16.  Equivalent plastic strain curve of crack tip under different load ratios and loading angles

    (a) β=30°;(b) R=0.3

    图  17  应力比R=0.1时不同加载角度下的裂纹断口形貌

    Figure  17.  Fracture morphology diagram under different loading angles at R=0.1

    (a)0°;(b)30°;(c)60°

    图  18  同一加载角度不同应力比下裂纹断口形貌

    Figure  18.  Fracture morphology diagram under different load ratios at the same loading angle

    (a) R=0.1, β=0°;(b) R=0.5, β=0°;(c) R=0.1, β=60°;(d) R=0.5, β=60°

    表  1  4130X钢化学成分

    Table  1.   Chemical composition of 4130X steel %

    CMnSiCrMoSPNiCu
    0.3450.87750.352750.99750.16550.0009750.00940.0180.024
    下载: 导出CSV

    表  2  4130X钢Ⅰ-Ⅱ复合型疲劳裂纹扩展试验方案

    Table  2.   FCG of 4130X steel for mixed mode Ⅰ-Ⅱ loading test program

    NO.加载角度β/(°)最大载荷Pmax/kN应力比R
    103.670.1
    20.3
    30.5
    4300.1
    50.3
    60.5
    7600.1
    80.3
    90.5
    下载: 导出CSV

    表  3  应力强度因子解的比较

    Table  3.   Comparison of solutions for stress intensity factors

    加载角度β/(°) 文献解[17]/
    (MPa·m1/2)
    本文有限元解/
    (MPa·m1/2)
    相对误差/%
    K K K K K K
    0 26.08 0 25.91 0 0.65 0
    30 26.60 −5.36 26.21 −5.44 −1.46 1.49
    60 28.91 −17.81 28.41 −18.19 −1.72 2.1
    下载: 导出CSV

    表  4  4130X钢Chaboche模型的材料性质

    Table  4.   Material properties of 4130X steel for Chaboche model

    Σs/MPaσ0/MPaC1/MPaγ1C2/MPaγ2
    715650162000180080500230
    下载: 导出CSV

    表  5  KK拟合结果

    Table  5.   Fitting results of K and K

    β K/(MPa·m1/2) K/(MPa·m1/2)
    $ \mathrm{\mathit{K}}=\dfrac{\mathit{\mathrm{\mathit{F}}}}{\mathrm{\mathit{BW}}^{1/2}}\cdot f\left(a_n\right),\quad\mathit{\mathit{\mathrm{\mathit{a}}}\mathit{_{\mathrm{\mathit{n}}}}}=\left(\mathrm{\mathit{a}}_0+\Delta\mathrm{\mathit{a}}\mathit{_{\mathrm{\mathit{x}}}}\right)/\mathrm{\mathit{W}} $ $ \mathrm{\mathit{K}}=\dfrac{\mathrm{\mathit{F}}}{\mathrm{\mathit{BW}}^{1/2}}\cdot f\left(a_n\right),\quad\mathrm{\mathit{a}}\mathit{\mathit{\mathit{\mathit{_{\mathrm{\mathit{n}}}}}}}=\left(\mathrm{\mathit{a}}_0+\Delta\mathrm{\mathit{a}}_{\mathrm{\mathit{x}}}\right)/\mathrm{\mathit{W}} $
    $K=\dfrac{\left(2+a_n\right) \cdot \left(0.232\;84+0.431\;6\cdot a_n-1.356\;65 \cdot a_n^2+0.980\;98 \cdot a_n^3-0.287\;05 \cdot a_n^4\right)}{\left(1-a_n\right)^{1.5}} $ $ K=0 $
    30° $ f\left({a}_{n}\right)=80.043{\cdot }{a}_{n}^{3}-156.707\;6{\cdot }{a}_{n}^{2}+106.461\cdot {a}_{n}-22.738 $ $ f\left({a}_{n}\right)=-8.16\cdot {a}_{n}^{3}+20.96\cdot {a}_{n}^{2}-15.62\cdot {a}_{n}+3.79 $
    60° $ f\left({a}_{n}\right)=25.485{\cdot }{a}_{n}^{3}-42.541{\cdot }{a}_{n}^{2}+31.325\cdot {a}_{n}-6.71 $ $ f\left({a}_{n}\right)=-29.80\cdot {a}_{n}^{3}+72.18\cdot {a}_{n}^{2}-54.53\cdot {a}_{n}+13.23 $
    下载: 导出CSV

    表  6  不同加载角度下θ表达式

    Table  6.   Expression for θ under different loading angles

    加载角 β/(°) θ/(°)
    30 θ=arctan(−0.0092×∆ax+0.5032)
    60 θ =arctan(−0.03072×∆ax+1.2021)
    下载: 导出CSV
  • [1] LI J, BO K, HUANG Q H, et al. Development trend and challenges of high-pressure hydrogen transportable pressure vessel[J]. Acta Energiae Solaris Sinica, 2022,43(3):20-26. (李军, 薄柯, 黄强华, 等. 高压氢气储运移动式压力容器发展趋势与挑战[J]. 太阳能学报, 2022,43(3):20-26.

    LI J, BO K, HUANG Q H, et al. Development trend and challenges of high-pressure hydrogen transportable pressure vessel[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 20-26.
    [2] NIBUR K A, MARCHI C S, SOMERDAY B P. Fracture and fatigue tolerant steel pressure vessels for gaseous hydrogen. In: ASME PVP, 2010: 18-22.
    [3] DING F, ZHAO T W, JIANG Y. A study of fatigue crack growth with changing loading direction[J]. Engineering Fracture Mechanics, 2006,74(13):2014-2029.
    [4] LUO P F, WANG C H. An experimental study on the elastic-plastic fracture in aductile material under mixed-mode loading[J]. Strain, 2008,44(3):8.
    [5] LIU X G, ZHU X L, GUO H D. Experimental and simulation study on Ⅰ-Ⅱ mixed-mode fatigue crack growth of TC4-DTelded joint[J]. Journal of Aeronautical Materials, 2020,40(2):61-69. (刘小刚, 朱笑林, 郭海丁. TC4-DT焊接接头Ⅰ-Ⅱ复合型疲劳裂纹扩展实验及模拟研究[J]. 航空材料学报, 2020,40(2):61-69.

    LIU X G, ZHU X L, GUO H D. Experimental and simulation study on Ⅰ-Ⅱ mixed-mode fatigue crack growth of TC4-DTelded joint[J]. Journal of Aeronautical Materials, 2020, 40(2): 61-69.
    [6] QIAN J, FATEMI A. Mixed mode fatigue crack growth: a literature survey[J]. Engineering fracture mechanics, 1996,55(6):969-990. doi: 10.1016/S0013-7944(96)00071-9
    [7] RICHARD HA, SCHRAMM B, SCHIRMEISEN N. Cracks on mixed mode loading-theories, experiments, simulations[J]. International journal of fatigue, 2014,62:93-103. doi: 10.1016/j.ijfatigue.2013.06.019
    [8] SANDER M, RICHARD H. Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth[J]. Int J Fatigue, 2006,28:583-591. doi: 10.1016/j.ijfatigue.2005.05.012
    [9] LIU J Y, WEN J, ZHAO J Y, et al. Fatigue crack growth behavior of CP-Ti cruciform specimens with mixed mode I-II crack under biaxial loading[J]. Materials, 2022,15(5):1926-1926. doi: 10.3390/ma15051926
    [10] LI Y F, TAO H L, GAO Q, et al. Parametric simulation method for 3-D non-planar crack propagation[J]. Journal of Aerospace Power, 2017,32(12):2888-2895. (李宇飞, 陶海亮, 高庆, 等. 三维平面裂纹扩展参数化模拟方法[J]. 航空动力学报, 2017,32(12):2888-2895.

    LI Y F, TAO H L, GAO Q, et al. Parametric simulation method for 3-D non-planar crack propagation[J]. Journal of Aerospace Power, 2017, 32(12): 2888-2895.
    [11] JIANG B, CHEN G, ZHAO H, et al. Fatigue propagation behavior of mixed mode crack in wheel steel[J]. Iron and Steel, 2018,53(12):100-104. (江波, 陈刚, 赵海. 中碳车轮钢复合型裂纹疲劳扩展行为[J]. 钢铁, 2018,53(12):100-104.

    JIANG B, CHEN G, ZHAO H, et al. Fatigue propagation behavior of mixed mode crack in wheel steel[J]. Iron and Steel, 2018, 53(12): 100-104.
    [12] ZHAO X, NIE K, ZHU T, et al. An equivalent model of mixed-mode crack to predict the fatigue growth characteristics[J]. Chinese Journal of Solid Mechanics, 2018,39(3):296-304. (赵翔, 聂凯, 朱涛, 等. 描述复合型疲劳裂纹扩展路径的等效模型[J]. 固体力学学报, 2018,39(3):296-304.

    ZHAO X, NIE K, ZHU T, et al. An equivalent model of mixed-mode crack to predict the fatigue growth characteristics[J]. Chinese Journal of Solid Mechanics, 2018, 39(3): 296-304.
    [13] DONG H R, GUO W L, XU F. Numerical analysis of three-dimensional Ⅰ/Ⅱ mixed-mode elastic-plastic fracture of aeronautical structural aluminum alloy[J]. Journal of Mechanical Strength, 2003, 25(2): 222-226. (董蕙茹, 郭万林, 徐绯. LC4CS铝合金三维复合型断裂的试验研究[J]. 机械强度, 2003, 25(2): 222-226.

    DONG H R, GUO W L, XU F. Numerical analysis of three-dimensional Ⅰ/Ⅱ mixed-mode elastic-plastic fracture of aeronautical structural aluminum alloy[J]. Journal of Mechanical Strength, 2003, 25(2): 222-226.
    [14] Ma S X, HU H, The mixed-mode propagation of fatigue crack in CTS specimen[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 698-704. (马世骧, 胡泓. CTS试件中复合型疲劳裂纹扩展[J]. 力学学报, 2006, 38(5): 698-704.

    Ma S X, HU H, The mixed-mode propagation of fatigue crack in CTS specimen[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 698-704.
    [15] ZHANG P, ZHOU C Y, XIE L Q, et al. Numerical investigation of mechanical behavior of crack tip under mode I and I-II mixed mode fatigue loading at negative load ratios. Theor Appl Fract Mech, 2020, 108: 102673.
    [16] WANG Q, LIU X, WANG W. Mixed mode fatigue crack growth behavior of Ni-Cr-Mo-V high strength steel weldments[J]. Int J Fatigue, 2017,102:79-91. doi: 10.1016/j.ijfatigue.2017.05.001
    [17] ZHANG P, XIE L Q, ZHOU C Y, et al. Experimental and numerical investigation on fatigue crack growth behavior of commercial pure titanium under I-II mixed mode loading at negative load ratios[J]. Int J Fatigue, 2020,138:105700. doi: 10.1016/j.ijfatigue.2020.105700
    [18] Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. Int J Plast, 1986,2:149-188. doi: 10.1016/0749-6419(86)90010-0
    [19] SONG Y Q, LI X S, LI M. Ⅰ-Ⅱ mixed-mode fatigue crack propagation of A7085 aluminum alloy and its numerical simulation[J]. Chinese Journal of Engineering, 2018,40(12):1510-1517. (宋彦琦, 李向上, 李名. A7085铝合金Ⅰ-Ⅱ复合型疲劳裂纹扩展及其数值模拟[J]. 工程科学学报, 2018,40(12):1510-1517.

    SONG Y Q, LI X S, LI M. Ⅰ-Ⅱ mixed-mode fatigue crack propagation of A7085 aluminum alloy and its numerical simulation[J]. Chinese Journal of Engineering, 2018, 40(12): 1510-1517.
    [20] ROZUMEK D, MACHA E. A survey of failure criteria and parameters in mixed-mode fatigue crack growth[J]. Mater Sci, 2009,45:190-210. doi: 10.1007/s11003-009-9179-2
    [21] SHAHANI A R, TABATABAEI S A. Effect of T-stress on the fracture of a four-point bend specimen[J]. Mater Design, 2009,30:2630-2635. doi: 10.1016/j.matdes.2008.10.031
    [22] ERDOGA F. On the crack extension in plates under plane loading and transverse shear[J]. J Basic Eng Trans ASME, 1963, 85.
    [23] TANAKA K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis[J]. Eng Fract Mech, 1974,6:493-507. doi: 10.1016/0013-7944(74)90007-1
    [24] RICARDS C E, LINDLEY T C. The influence of stress intensity and microstructure on fatigue crack propagation in ferritic materials[J] Eng Fract Mech, 1972, 4: 951-978.
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  48
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 网络出版日期:  2025-06-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回