中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒渣高效提取冶金:钙镁复合焙烧提钒工艺

张旭 向俊一 申彪 何文艺 韦林森 吕学伟

张旭, 向俊一, 申彪, 何文艺, 韦林森, 吕学伟. 钒渣高效提取冶金:钙镁复合焙烧提钒工艺[J]. 钢铁钒钛, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001
引用本文: 张旭, 向俊一, 申彪, 何文艺, 韦林森, 吕学伟. 钒渣高效提取冶金:钙镁复合焙烧提钒工艺[J]. 钢铁钒钛, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001
ZHANG Xu, XIANG Junyi, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001
Citation: ZHANG Xu, XIANG Junyi, SHEN Biao, HE Wenyi, WEI Linsen, LÜ Xuewei. Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 1-7. doi: 10.7513/j.issn.1004-7638.2025.04.001

钒渣高效提取冶金:钙镁复合焙烧提钒工艺

doi: 10.7513/j.issn.1004-7638.2025.04.001
基金项目: 国家自然科学基金(52004044);重庆科技大学研究生创新计划项目(YKJCX2420220)。
详细信息
    作者简介:

    张旭,2000年出生,女,四川内江人,硕士生,研究方向为钒渣提钒,E-mail:17828284872@163.com

    通讯作者:

    向俊一,1989年出生,湖北宜昌人,博士,副研究员,研究方向为钒冶金及新材料制备,E-mail:xiangjunyi126@126.com

  • 中图分类号: TF841.3

Efficient extraction metallurgy of vanadium slag: calcium-magnesium composite roasting vanadium extraction process

  • 摘要: 钙化工艺是一种相对清洁的钒渣提钒技术,但在钒收率、产品指标等方面仍有进一步提升空间。笔者团队原创性开发的钙镁复合提钒工艺通过离子协同效应,同时实现了钒回收率提升、杂质溶出率降低和尾渣减量的效果。文中阐述了钙镁复合对钒渣提钒工艺全流程的综合影响,钙镁复合焙烧后钒渣焙烧熟料中的主要含钒物相由Ca2V2O7、Mn2V2O7转变为Ca2V2O7、Mn2V2O7、Mg2V2O7和Ca5Mg4V6O24;复合焙烧产物酸浸后钒浸出率提升约5%,Ca、P等杂质元素溶出率降低;钒浸出液铵盐沉钒率达99.5%,氧化钒产品纯度达99.8%;沉钒废水经石灰中和处理后可完全回用,且不影响原工艺顺行。
  • 图  1  不同钒酸盐在硫酸溶液(pH=3.0)中的浸出率

    Figure  1.  Leaching efficiency of different vanadates in sulfuric aicd solution (pH=3.0)

    图  2  钒渣焙烧熟料的XRD衍射图谱

    Figure  2.  XRD diffraction patterns of vanadium slag roasting clinker

    图  3  不同钙镁配比下的钒浸出率等值线

    Figure  3.  Contour map of vanadium leaching rate under different calcium-magnesium ratios

    图  4  氧化钒产品的XRD衍射图谱

    Figure  4.  XRD diffraction spectra of vanadium oxide products

    图  5  钙镁复合焙烧提钒工艺路线

    Figure  5.  Process roadmap of vanadium extraction by calcium-magnesium composite roasting

    表  1  钒渣主要组成成分

    Table  1.   The main components of vanadium slag %

    V2O5TFeSiO2TiO2MgOAl2O3MnOCaOCr2O3
    15.2931.0014.5014.382.923.477.322.571.43
    下载: 导出CSV

    表  2  不同MgO/(CaO+MgO)摩尔比下杂质元素的浸出浓度

    Table  2.   Leaching concentrations of impurity elements at different MgO/(CaO+MgO) molar ratios mg/L

    MgO/(CaO+MgO)VCrPMnFeMg
    0142658.9259.52361423.95627.7
    1/6160746.8280.854452316.50894.8
    1/3160746.2591.849504917.781344
    1/2165015.1211.707560418.921507
    下载: 导出CSV

    表  3  不同MgO/(CaO+MgO)摩尔比下浸出尾渣化学成分

    Table  3.   Chemical composition of the leaching residue with different MgO/(CaO+MgO) mole ratio %

    MgO/
    (CaO+MgO)
    MgAlMnPSCaTiVCrSiFeO渣率
    00.420.383.810.097.256.686.210.711.294.0430.536.2193.7
    1/60.630.383.390.16.016.046.380.621.284.5231.766.3890.6
    1/30.910.383.280.15.865.16.840.641.334.7932.586.8489.4
    1/21.830.383.180.095.314.356.850.641.394.9133.076.1588.5
    下载: 导出CSV

    表  4  铵盐沉钒废水中元素浓度及沉钒率

    Table  4.   Element concentration and vanadium precipitation rate in vanadium precipitation wastewater by ammonium salt

    MgO/(CaO+MgO)元素浓度/(mg·L−1)沉钒率/%
    VCrPFeSiMnMg
    073.00.100.101.1027.6222037099.24
    1/657.01.580.380.4813.5321760299.50
    1/362.50.580.411.288.55348884099.45
    1/267.50.600.551.806.05352876799.42
    下载: 导出CSV

    表  5  氧化钒产品化学成分

    Table  5.   Chemical composition of vanadium oxide products %

    工艺V2O5MgSiAlPMnTiCrCaFe
    钙化99.50.0030.0037<0.0010.0080.1680.0370.0110.0700.081
    钙镁复合99.80.003<0.001<0.0010.0020.0090.0130.0090.0020.002
    下载: 导出CSV

    表  6  废水循环次数对钒渣浸出的影响

    Table  6.   Effect of wastewater recirculation on the leaching of vanadium slag

    循环次数元素浓度/(mg·L−1钒浸出率/%
    VCrPMnMg
    1135324.16027.543073800.191.85
    2151674.25326.893555855.691.45
    3157954.37127.213397832.290.98
    4159934.63528.803550897.891.76
    下载: 导出CSV
  • [1] WU Y, CHEN D H, LIU W H, et al. 2022 Global vanadium industry development report[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 1-8. (吴优, 陈东辉, 刘武汉, 等. 2022年全球钒工业发展报告[J]. 钢铁钒钛, 2023, 44(6): 1-8.

    WU Y, CHEN D H, LIU W H, et al. 2022 Global vanadium industry development report[J]. Iron Steel Vanadium Titanium, 2023, 44(6): 1-8.
    [2] LIANG X Y, YE G H, ZHU S Q, et al. Research progress of vanadium extraction process from vanadium-titanium magnetite[J]. Rare Metals, 2023, 47(6): 893-907. (梁雪崟, 叶国华, 朱思琴, 等. 钒钛磁铁矿提钒工艺的研究进展[J]. 稀有金属, 2023, 47(6): 893-907.

    LIANG X Y, YE G H, ZHU S Q, et al. Research progress of vanadium extraction process from vanadium-titanium magnetite[J]. Rare Metals, 2023, 47(6): 893-907.
    [3] CHEN H S. Study on the process of extracting V2O5 from vanadium slag by lime roasting[J]. Iron Steel Vanadium Titanium, 1992(6): 1-9. (陈厚生. 钒渣石灰焙烧法提取V2O5工艺研究[J]. 钢铁钒钛, 1992(6): 1-9.

    CHEN H S. Study on the process of extracting V2O5 from vanadium slag by lime roasting[J]. Iron Steel Vanadium Titanium, 1992(6): 1-9.
    [4] HUANG Q Y, XIANG J Y, PEI G S, et al. Mechanical activation enhanced vanadium slag calcification vanadium extraction process[J]. Chinese Journal of Nonferrous Metals, 2020, 30(4): 858-865. (黄青云, 向俊一, 裴贵尚, 等. 机械活化强化钒渣钙化提钒工艺[J]. 中国有色金属学报, 2020, 30(4): 858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745

    HUANG Q Y, XIANG J Y, PEI G S, et al. Mechanical activation enhanced vanadium slag calcification vanadium extraction process[J]. Chinese Journal of Nonferrous Metals, 2020, 30(4): 858-865. doi: 10.11817/j.ysxb.1004.0609.2020-35745
    [5] FU N X, ZHANG L, LIU W H, et al. Mechanism analysis of phase transformation process of vanadium slag calcification roasting[J]. Chinese Journal of Nonferrous Metals, 2018, 28(2): 377-386. (付念新, 张林, 刘武汉, 等. 钒渣钙化焙烧相变过程的机理分析[J]. 中国有色金属学报, 2018, 28(2): 377-386.

    FU N X, ZHANG L, LIU W H, et al. Mechanism analysis of phase transformation process of vanadium slag calcification roasting[J]. Chinese Journal of Nonferrous Metals, 2018, 28(2): 377-386.
    [6] WANG C Q, LIU W H, LIU H Q, et al. Vanadium slag calcification roasting sintering phenomenon research[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 6-11. (王春琼, 刘武汉, 刘恢前, 等. 钒渣钙化焙烧烧结现象研究[J]. 钢铁钒钛, 2013, 34(6): 6-11.

    WANG C Q, LIU W H, LIU H Q, et al. Vanadium slag calcification roasting sintering phenomenon research[J]. Iron Steel Vanadium Titanium, 2013, 34(6): 6-11.
    [7] YIN D F, PENG Y, SUN Z H, et al. Study on the influence factors of vanadium slag calcification roasting and process thermal analysis[J]. Metal Mine, 2012, 41(4): 91-94. (尹丹凤, 彭毅, 孙朝晖, 等. 攀钢钒渣钙化焙烧影响因素研究及过程热分析[J]. 金属矿山, 2012, 41(4): 91-94.

    YIN D F, PENG Y, SUN Z H, et al. Study on the influence factors of vanadium slag calcification roasting and process thermal analysis[J]. Metal Mine, 2012, 41(4): 91-94.
    [8] FAN K, LI Z C, LI Z S, et al. Effects of different calcification agents on acid leaching of vanadium from high vanadium slag[J]. Journal of Chongqing University (Natural Science Edition), 2015(5): 151-156. (范坤, 李曾超, 李子申, 等. 不同钙化剂对高钒渣酸浸提钒的影响[J]. 重庆大学学报(自然科学版), 2015(5): 151-156.

    FAN K, LI Z C, LI Z S, et al. Effects of different calcification agents on acid leaching of vanadium from high vanadium slag[J]. Journal of Chongqing University (Natural Science Edition), 2015(5): 151-156.
    [9] ZHANG J H, ZHANG W, ZHANG L, et al. Effect of acid leaching on vanadium leaching rate in calcification roasting process[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(11): 1574-1578. (张菊花, 张伟, 张力, 等. 酸浸对钙化焙烧提钒工艺钒浸出率的影响[J]. 东北大学学报(自然科学版), 2014, 35(11): 1574-1578.

    ZHANG J H, ZHANG W, ZHANG L, et al. Effect of acid leaching on vanadium leaching rate in calcification roasting process[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(11): 1574-1578.
    [10] ZHAO Y, LI H Y, YIN X C, et al. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid[J]. International Journal of Mineral Processing, 2014, 133: 105-111. doi: 10.1016/j.minpro.2014.10.011
    [11] XIANG J Y, HUANG Q Y, LÜ X W, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical and Materials Transactions B, 2017, 48(5): 2759-2767. doi: 10.1007/s11663-017-1033-6
    [12] YANG Y, MAO H H, MALIN S. An assessment of the Ca-V-O system[J]. Calphad, 2017, 56: 29-40. doi: 10.1016/j.calphad.2016.11.005
    [13] JIANG T, WEN J, ZHOU M, et al. Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag[J]. Journal of Alloys and Compounds, 2018, 742: 402-412. doi: 10.1016/j.jallcom.2018.01.201
    [14] TAYLOR P R, SHUEY S A, VIDAL E E, et al. Extractive metallurgy of vanadium-containing titaniferous magnetite ores: A review[J]. Minerals and Metallurgical Processing, 2006, 23: 80-86.
    [15] CAO Z M, WANG N, XIE W, et al. Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air[J]. Calphad, 2017, 56: 72-79. doi: 10.1016/j.calphad.2016.12.001
    [16] YANG S Z. Vanadium Metallurgy[M]. Metallurgical Industry Press, 2010. (杨守志. 钒冶金[M]. 冶金工业出版社, 2010.

    YANG S Z. Vanadium Metallurgy[M]. Metallurgical Industry Press, 2010.
    [17] JI C L, ZHAN Q L, ZENG G Y. Solubility of magnesium vanadate in water-basic research on vanadium extraction with non-sodium salt additives[J]. Non-ferrous Metals, 1984(1): 60-66. (冀春霖, 詹庆霖, 曾桂仪. 钒酸镁盐在水中的溶解度-非钠盐添加剂提钒的基础研究[J]. 有色金属, 1984(1): 60-66.

    JI C L, ZHAN Q L, ZENG G Y. Solubility of magnesium vanadate in water-basic research on vanadium extraction with non-sodium salt additives[J]. Non-ferrous Metals, 1984(1): 60-66.
    [18] ZHANG L, ZHANG T, FU N X, et al. Calcification roasting thermal analysis and phase transformation mechanism analysis of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148. (张林, 张涛, 付念新, 等. 钒渣钙化焙烧热分析及物相转变机理分析[J]. 中国有色冶金, 2024, 53(4): 142-148.

    ZHANG L, ZHANG T, FU N X, et al. Calcification roasting thermal analysis and phase transformation mechanism analysis of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148.
    [19] LU X, BAI L, RAO H, et al. Oxidation behavior of ferrovanadium spinel particles in air: isothermal kinetic and reaction mechanism[J]. Journal of Central South University, 2024, 31(9): 3090-3102. doi: 10.1007/s11771-024-5754-9
    [20] WEN J, JIANG T, LI F F, et al. Conversion mechanism of calcium vanadate and manganese vanadate in a simplified CaO-V2O5-MnO2 system for calcification roasting of vanadium slag[J/OL]. Transactions of Nonferrous Metals Society of China, 1-19[2025-03-15]. https://link.cnki.net/urlid/43.1239.TG.20240807.1348.015.
    [21] WANG X. Vanadium slag calcium magnesium composite roasting-acid leaching vanadium process research [D]. Chongqing: Chongqing University, 2022. (王鑫. 钒渣钙镁复合焙烧—酸浸提钒工艺研究[D]. 重庆: 重庆大学, 2022.

    WANG X. Vanadium slag calcium magnesium composite roasting-acid leaching vanadium process research [D]. Chongqing: Chongqing University, 2022.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  66
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回