中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

朝阳地区钛渣钠化焙烧过程工艺参数研究

闫家棋 赵亮 董辉 冯军胜

闫家棋, 赵亮, 董辉, 冯军胜. 朝阳地区钛渣钠化焙烧过程工艺参数研究[J]. 钢铁钒钛, 2025, 46(4): 8-17. doi: 10.7513/j.issn.1004-7638.2025.04.002
引用本文: 闫家棋, 赵亮, 董辉, 冯军胜. 朝阳地区钛渣钠化焙烧过程工艺参数研究[J]. 钢铁钒钛, 2025, 46(4): 8-17. doi: 10.7513/j.issn.1004-7638.2025.04.002
YAN Jiaqi, ZHAO Liang, DONG Hui, FENG Junsheng. Study on the parameters of sodium roasting process of titanium slag from Chaoyang area[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 8-17. doi: 10.7513/j.issn.1004-7638.2025.04.002
Citation: YAN Jiaqi, ZHAO Liang, DONG Hui, FENG Junsheng. Study on the parameters of sodium roasting process of titanium slag from Chaoyang area[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 8-17. doi: 10.7513/j.issn.1004-7638.2025.04.002

朝阳地区钛渣钠化焙烧过程工艺参数研究

doi: 10.7513/j.issn.1004-7638.2025.04.002
基金项目: 国家重点研发计划(2020YFC1909303)。
详细信息
    作者简介:

    闫家棋,2001年出生,男,辽宁沈阳人,硕士研究生,研究方向:钛渣资源化利用,E-mail: 2980260276@qq.com

    通讯作者:

    董辉,1969出生,男,辽宁锦州人,教授,研究方向:炉窑内热工过程,传热传质,E-mail:dongh@mail.neu.edu.cn

  • 中图分类号: TF823

Study on the parameters of sodium roasting process of titanium slag from Chaoyang area

  • 摘要: 利用钠化焙烧工艺对朝阳地区钛渣进行提质处理,对高温下熔融碳酸钠与钛渣反应的控制环节和活化能进行分析计算,对焙烧过程的工艺参数,如焙烧温度、时间以及碱渣比的影响效果进行研究。动力学分析表明,焙烧过程的控制性环节为反应物在固体产物层中的内扩散,反应活化能为50.13 kJ/mol。吉布斯自由能随温度变化情况表明在温度高于900 ℃时反应基本均可发生;转化率随时间变化情况表明在1 h后反应基本完成。通过分析各参数对焙烧过程的影响效果,最终确定焙烧温度900 ℃,碳酸钠与钛渣质量比值1.0,焙烧时间1.5 h为兼具了除杂效果和经济性的最佳工艺参数
  • 图  1  钛渣XRD图谱

    (a) 原料;(b) 酸洗后钛渣

    Figure  1.  XRD patterns of titanium slag

    图  2  钛元素转化率随焙烧温度和时间变化情况

    Figure  2.  Effect of roasting temperature and time on titanium conversion

    图  3  钛渣转化率在三个控制方程下的拟合情况(900 ℃)

    Figure  3.  Fitting results of titanium conversion rate by three kinetics equations (900 ℃)

    图  4  不同温度下焙烧动力学拟合

    Figure  4.  Fitting of roasting kinetics under various reaction temperatures

    图  5  反应速率常数对数值与温度倒数关系

    Figure  5.  Relationship between natural logarithm of reaction rate constant and reciprocal temperature

    图  6  焙烧温度对产物的影响

    (a) TiO2回收率; (b) 杂质去除率

    Figure  6.  Effect of roasting temperature on products

    图  7  焙烧过程中主要反应吉布斯自由能变化

    Figure  7.  The change in Gibbs free energy of the main reaction during the roasting process

    图  8  不同焙烧温度下产物XRD图谱

    (a) 900 ℃; (b) 1000 ℃; (c) 1100 ℃; (d) 1200

    Figure  8.  XRD patterns of samples under varied roasting temperature

    图  9  不同焙烧条件产物扫描电镜图片

    (a) 温度900 ℃,碱渣比0.8,时间1.5 h; (b) 温度1 100 ℃,碱渣比0.8,时间1.5 h; (c) 温度900 ℃,碱渣比1.4,时间1.5 h

    Figure  9.  SEM images of roasted slags under various conditions

    图  10  碱渣比对产物的影响

    (a) TiO2回收率; (b) 杂质去除率

    Figure  10.  Effects of A/S ratio on products

    图  11  不同碱渣比下产物的XRD图谱

    Figure  11.  XRD patterns of samples under varied A/S ratio

    (a) 0.8; (b) 1.0; (c) 1.2; (d) 1.4

    图  12  焙烧时间对产物的影响

    (a) TiO2回收率; (b) 杂质去除率

    Figure  12.  Effects of roasting time on products

    图  13  不同焙烧时间下产物的XRD图谱

    Figure  13.  XRD patterns of samples under varied roasting time

    (a) 1.5 h; (b) 2.0 h; (c) 2.5 h; (d) 3.0 h

    图  14  焙烧后钛渣表征分析

    (a) 扫描电镜; (b)~(h) 元素分布

    Figure  14.  Characterization analysis of roasted slag

    表  1  朝阳地区钛渣化学成分

    Table  1.   Chemical composition of titanium slag from Chaoyang area %

    TiO2SiO2CaOMgOAl2O3TFeFeOMnV
    36.7713.653.674.4211.978.826.730.562.31
    下载: 导出CSV

    表  2  酸洗预处理后钛渣主要化学成分

    Table  2.   Chemical composition of acid-leached titanium slag %

    TiO2CaOMgOSiO2Al2O3
    70.950.0476.072.224.91
    下载: 导出CSV

    表  3  不同温度下的反应速率常数

    Table  3.   Reaction rate constant at various temperatures

    T/℃T/K(1000/T)/K−1kdlnkd
    87511480.87110.022003.8167
    90011730.85250.024203.7214
    92511980.83470.027363.5987
    95012230.81770.030213.4996
    下载: 导出CSV

    表  4  图14(a)中焙烧产物不同区域EDS分析结果

    Table  4.   EDS analysis of different regions of roasted sample in figure 14(a) %

    图14(a)中点位ONaMgAlSiTiFeTotal
    142.8714.834.111.732.0934.37100.00
    240.9017.1212.138.8215.375.65100.00
    321.1310.871.920.1365.95100.00
    436.7911.698.670.980.3035.466.12100.00
    下载: 导出CSV

    表  5  焙烧产物结果分析

    Table  5.   The results analysis of roasted product

    组分质量分数/%回收率K/%去除率αi/%
    TiO265.9192.3439
    CaO0.1098.5963
    MgO5.7233.3309
    SiO20.8196.9429
    Al2O31.0495.5240
    下载: 导出CSV
  • [1] LÜ J W, YU Z X, LI J L, et al. Resource characteristics and exploitation prospect of vanadium titano magnetite in Chaoyang, Liaoning province[J]. Non-Ferrous Mining and Metallurgy, 2023, 39(3): 9-11. (吕佳卫, 于泽新, 李玖龙, 等. 辽宁朝阳钒钛磁铁矿资源特点及开发利用前景[J]. 有色矿冶, 2023, 39(3): 9-11.

    LÜ J W, YU Z X, LI J L, et al. Resource characteristics and exploitation prospect of vanadium titano magnetite in Chaoyang, Liaoning province[J]. Non-Ferrous Mining and Metallurgy, 2023, 39(3): 9-11.
    [2] HAN J Q, ZHANG J, ZHANG J H, et al. Recovery of Fe, V and Ti in modified Ti-bearing blast furnace slag[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 333-344. doi: 10.1016/S1003-6326(22)65798-4
    [3] ZHANG Y M, YI L Y, WANG L N, et al. A novel process for the recovery of iron, titanium and vanadium from vanadium-bearing titanomagnetite: sodium modification-direct reduction coupled process[J]. International Journal of Minerals Metallurgy and Materials, 2017, 24(5): 504-511. doi: 10.1007/s12613-017-1431-4
    [4] SHI J J, QIU Y C, YU B, et al. Titanium extraction from titania-bearing blast furnace slag: A review[J]. The Journal of the Minerals, Metals and Materials Society, 2022, 74(2): 654-667. doi: 10.1007/s11837-021-05040-y
    [5] LIU X J, CHEN D S, CHU J L, et al. Recovery of titanium and vanadium from titanium-vanadium slag obtained by direct reduction of titanomagnetite concentrates[J]. Rare Metals, 2022, 41(5): 1688-1696. doi: 10.1007/s12598-015-0532-3
    [6] JING J F, GUO Y F, CHEN F, et al. A novel sequential leaching process for titanium slag to increase TiO2 grade to prepare boiling chlorinated charges[J]. Hydrometallurgy, 2023, 217.
    [7] SUI Q Q, DOU Z H, ZHANG T A, et al. Study on the one-step acid conversion of the alkali conversion product of high titanium slag to prepare TiO2 of high purity[J]. Hydrometallurgy, 2022, 211.
    [8] XUE T Y, WANG L N, QI T, et al. Decomposition kinetics of titanium slag in sodium hydroxide system[J]. Hydrometallurgy, 2009, 95(1-2): 22-27. doi: 10.1016/j.hydromet.2008.04.004
    [9] ZHANG L, ZHANG L N, WANG M Y, et al. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition[J]. Minerals Engineering, 2007, 20(7): 684-693. doi: 10.1016/j.mineng.2007.01.003
    [10] ZHENG F Q, GUO Y F, LIU S S, et al. Removal of magnesium and calcium from electric furnace titanium slag by H3PO4 oxidation roasting-leaching process[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 356-366. doi: 10.1016/S1003-6326(18)64669-2
    [11] FAN H L, WANG R X, XU Z F, et al. Migration and enrichment behaviors of Ca and Mg elements during cooling and crystallization of boron-bearing titanium slag melt[J]. Crystals, 2021, 11(8): 888. doi: 10.3390/cryst11080888
    [12] LIU S S, GUO Y F, QIU G Z, et al. Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1174-1178. doi: 10.1016/S1003-6326(13)62580-7
    [13] ABDELGALIL M S, EL-BARAWY K, YANG G, et al. The recovery of TiO2 from ilmenite ore by ammonium sulfate roasting–leaching process[J]. Processes, 2023, 11(9): 2570-2587. doi: 10.3390/pr11092570
    [14] MA J, LI W, FU G Q, et al. Effect of TiO2 on the phase transformation and microstructure evolution of Ti-containing melting slag in the alkali fusion process[J]. Jom, 2024, 76(6): 3021-3027. doi: 10.1007/s11837-024-06558-7
    [15] CHEN J, JIANG Q, LI K Q, et al. The productive preparation of synthetic rutile from titanium slag via an improved microwave heating and acid-alkali joint leaching approach[J]. Chemical Engineering and Processing-Process Intensification, 2022, 172, 108773.
    [16] CHEN J, PENG J H, HE A X, et al. Investigation on the decomposition of titanium slag using sodium carbonate for preparing rutile TiO2[J]. Materials Chemistry and Physics, 2022, 290, 126626.
    [17] MA J, LI W, FU G Q, et al. Effect of roasting characteristics on the alkali fusion behavior and mechanism of melting titanium slag[J]. Journal of Sustainable Metallurgy, 2022, 8(3): 1381-1391. doi: 10.1007/s40831-022-00580-2
    [18] CHEN J, GUO S H, OMRAN M, et al. Microwave-assisted preparation of nanocluster rutile TiO2 from titanium slag by NaOH-KOH mixture activation[J]. Advanced Powder Technology, 2022, 33(5): 103549.
    [19] Fan H L. Fundamental research on modification of molten titanium slag from electric furnace and removal of calcium and magnesium impurities[D]. Chongqing: Chongqing University, 2019. (范鹤林. 熔融电炉钛渣改性及钙镁杂质去除的基础研究[D].重庆: 重庆大学, 2019.

    Fan H L. Fundamental research on modification of molten titanium slag from electric furnace and removal of calcium and magnesium impurities[D]. Chongqing: Chongqing University, 2019.
    [20] CHEN W, LIU B G, DING J, et al. Mechanism and kinetics study on sulfuric acid leaching of titanium from NaOH roasting ilmenite[J]. Jom, 2024, 76(9): 5365-5375. doi: 10.1007/s11837-024-06746-5
    [21] DE O A L B, DA S G D S, DE A P F, et al. Optimization of alkaline roasting to enable acid leaching of titanium from anatase ores[J]. Journal of Sustainable Metallurgy, 2023, 9(1): 183-193. doi: 10.1007/s40831-022-00637-2
    [22] DONG H G, JIANG T, GUO Y F, et al. Upgrading a Ti-slag by a roast-leach process[J]. Hydrometallurgy, 2012, 113-114: 119-121.
    [23] LIU J. Research on UGS slag production process[D]. Kunming: Kunming University of Science and Technology, 2013. (刘娟. UGS渣生产工艺研究[D]. 昆明: 昆明理工大学, 2013.

    LIU J. Research on UGS slag production process[D]. Kunming: Kunming University of Science and Technology, 2013.
    [24] KANG J X, GAO L, ZHANG M Y, et al. Synthesis of rutile TiO2 powder by microwave-enhanced roasting followed by hydrochloric acid leaching[J]. Advanced Powder Technology, 2020, 31(3): 1140-1147. doi: 10.1016/j.apt.2019.12.042
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  31
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回