中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废SCR脱硝催化剂中V、Mo、W与Ti的选择性分离研究

张凯龙 陈良 王正豪 罗冬梅

张凯龙, 陈良, 王正豪, 罗冬梅. 废SCR脱硝催化剂中V、Mo、W与Ti的选择性分离研究[J]. 钢铁钒钛, 2025, 46(4): 18-26. doi: 10.7513/j.issn.1004-7638.2025.04.003
引用本文: 张凯龙, 陈良, 王正豪, 罗冬梅. 废SCR脱硝催化剂中V、Mo、W与Ti的选择性分离研究[J]. 钢铁钒钛, 2025, 46(4): 18-26. doi: 10.7513/j.issn.1004-7638.2025.04.003
ZHANG Kailong, CHEN Liang, WANG Zhenghao, LUO Dongmei. Study on selective separation of V, Mo, W from Ti in spent SCR denitrification catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 18-26. doi: 10.7513/j.issn.1004-7638.2025.04.003
Citation: ZHANG Kailong, CHEN Liang, WANG Zhenghao, LUO Dongmei. Study on selective separation of V, Mo, W from Ti in spent SCR denitrification catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 18-26. doi: 10.7513/j.issn.1004-7638.2025.04.003

废SCR脱硝催化剂中V、Mo、W与Ti的选择性分离研究

doi: 10.7513/j.issn.1004-7638.2025.04.003
基金项目: 天府永兴实验室科技攻关重点项目(2023KJGG04)。
详细信息
    作者简介:

    张凯龙,2000年出生,男,陕西咸阳人,硕士研究生,主要从事废钒钛系SCR脱硝催化剂回收技术研究,E-mail: klzhangscu@163.com

    通讯作者:

    罗冬梅,1969年出生,女,博士,教授,主要从事资源回收和储能材料开发等研究工作,E-mail: dmluo@scu.edu.cn

  • 中图分类号: TF841, X781

Study on selective separation of V, Mo, W from Ti in spent SCR denitrification catalyst

  • 摘要: 废钒钛系SCR脱硝催化剂是一种含有V、Mo、W、Ti等有价金属的危险废物,实现其无害化处理和资源化利用具有重要意义。分别采用Na2CO3焙烧-水浸、NaOH焙烧-水浸、NaOH常压浸出、NaOH加压浸出等工艺处理废V2O5-MoO3-WO3/TiO2四元SCR脱硝催化剂,实现了钒、钼、钨等活性组分与钛的选择性分离。通过研究焙烧参数和浸出参数对钒、钼、钨浸出率及浸出渣物相的影响,确定了NaOH焙烧-水浸工艺为废V2O5-MoO3-WO3/TiO2四元SCR脱硝催化剂的优选处理工艺。在优选条件下,经过NaOH焙烧-水浸后,V、Mo、W的浸出率分别为97.29%、99.33%和87.57%,并获得了主要物相为六钛酸钠(Na2Ti6O13)的浸出渣。
  • 图  1  废SCR催化剂的XRD图谱

    Figure  1.  XRD pattern of spent SCR catalyst

    图  2  废SCR催化剂的SEM及EDS图谱

    (a)SEM图谱; (b)A处EDS能谱图

    Figure  2.  SEM and EDS patterns of spent SCR catalyst

    图  3  Na2CO3焙烧-水浸工艺中焙烧条件对元素浸出率及浸出渣物相的影响

    (a)Na2CO3用量;(b)焙烧温度;(c)焙烧时间对元素浸出率的影响;(d)Na2CO3用量;(e)焙烧温度;(f)焙烧时间对浸出渣物相的影响

    Figure  3.  Effects of roasting conditions on elements leaching efficiencies and leaching residue phases in the Na2CO3 roasting-water leaching process

    图  4  Na2CO3焙烧-水浸工艺中浸出条件对元素浸出率的影响

    (a)水浸温度;(b)水浸液固比;(c)水浸时间

    Figure  4.  Effects of leaching conditions on elements leaching efficiencies in the Na2CO3 roasting-water leaching process

    图  5  NaOH焙烧-水浸工艺中焙烧条件对元素浸出率及浸出渣物相的影响

    (a)NaOH用量;(b)焙烧温度;(c)焙烧时间对元素浸出率的影响;(d)NaOH用量;(e)焙烧温度;(f)焙烧时间对浸出渣物相的影响

    Figure  5.  Effects of roasting conditions on elements leaching efficiencies and leaching residue phases in the NaOH roasting-water leaching process

    图  6  NaOH焙烧-水浸工艺中浸出条件对元素浸出率的影响

    (a)水浸温度; (b)水浸液固比; (c)水浸时间

    Figure  6.  Effects of leaching conditions on elements leaching efficiencies in the NaOH roasting-water leaching process

    图  7  NaOH常压浸出工艺中浸出条件对元素浸出率的影响及浸出渣的XRD图谱

    (a)NaOH的浓度;(b)浸出温度;(c)浸出液固比;(d)浸出时间对元素浸出率的影响;(e)最佳浸出条件下浸出渣的XRD图谱

    Figure  7.  Effects of leaching conditions on elements leaching efficiencies and the XRD pattern of the leaching residue in the NaOH atmospheric pressure leaching process

    图  8  NaOH加压浸出工艺中浸出条件对元素浸出率及浸出渣物相的影响

    (a)NaOH浓度;(b)浸出温度;(c)浸出液固比;(d)浸出时间对元素浸出率的影响;(e)NaOH浓度;(f)浸出温度;(g)浸出液固比;(h)浸出时间对浸出渣物相的影响

    Figure  8.  Effects of leaching conditions on elements leaching efficiencies and leaching residues phase in the NaOH pressure leaching process

    图  9  不同工艺处理废SCR催化剂浸出渣的XRD图谱

    Figure  9.  XRD patterns of leaching residue of the spent SCR catalyst treated by different processes

    图  10  不同工艺处理废SCR催化剂浸出渣的SEM及EDS图谱

    (a)Na2CO3焙烧-水浸;(b)NaOH焙烧-水浸;(c)NaOH常压浸出;(d)NaOH加压浸出

    Figure  10.  SEM and EDS diagrams of leaching residues from spent SCR catalyst treated by different processes

    表  1  废SCR催化剂化学组成

    Table  1.   Chemical composition of spent SCR catalyst %

    TiVMoWSiCaAlSCO其他
    43.151.250.931.041.120.790.281.633.0943.752.97
    下载: 导出CSV

    表  2  四种分离工艺的优选条件及浸出率总结

    Table  2.   Summary of optimized conditions and leaching efficiencies for four separation processes

    工艺 优选条件 浸出率/%
    质量比 T/℃ t/min L/S CNaOH/
    (mol·L−1)
    V Mo W
    Na2CO3
    焙烧-水浸
    焙烧 0.7 800 30 95.82 99.15 87.91
    浸出 20 2 4:1
    NaOH
    焙烧-水浸
    焙烧 0.3 750 30 97.29 99.33 87.57
    浸出 25 6 3:1
    NaOH
    常压浸出
    浸出 25 60 6:1 0.6 69.16 65.44 7.09
    NaOH
    加压浸出
    浸出 180 100 6:1 5 96.97 99.25 90.93
    下载: 导出CSV

    表  3  NaOH焙烧-水浸工艺获得的浸出液元素浓度

    Table  3.   Element concentration of leaching solution obtained by the NaOH roasting-water leaching process g/L

    VMoWAlPTiSiSNaCa
    3.392.722.631.270.320.083.724.34
    下载: 导出CSV

    表  4  NaOH焙烧-水浸获得的浸出渣的化学组成

    Table  4.   Chemical composition of leaching residue obtained by the NaOH roasting-water leaching process %

    TiO2Na2OSiO2CaOAl2O3V2O5MoO3WO3PSO3
    69.5321.873.431.590.940.120.170.260.040.67
    下载: 导出CSV
  • [1] WEI Y, LI D, QIAO J, et al. Recovery of spent SCR denitration catalyst: A review and recent advances[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110104. doi: 10.1016/j.jece.2023.110104
    [2] RAKSHA S. Selective catalytic reduction catalyst (SCR Catalyst) market size [2031]. Growth market reports, 2025. Report ID: CM-566.
    [3] GAO Y, LUAN T, LÜ T, et al. Performance of V2O5-WO3-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 1-7. doi: 10.1016/S1004-9541(13)60434-6
    [4] WEN C, GUO Y, YAN K, et al. Variations in the physicochemical properties of spent honeycomb V2O5-WO3/TiO2 catalysts from PC and CFB boilers SCR denitration systems[J]. Fuel, 2023, 347: 128384. doi: 10.1016/j.fuel.2023.128384
    [5] MA L, XI X, CHEN J, et al. Comprehensive recovery of W, V, and Ti from spent selective reduction catalysts[J]. Rare Metals, 2023, 42(10): 3518-3531. doi: 10.1007/s12598-023-02321-0
    [6] FERELLA F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246: 118990. doi: 10.1016/j.jclepro.2019.118990
    [7] GAO J, LU W, LI Y, et al. Organic acid-mediated leaching kinetics study and selective extraction of Mo, V, and Ni from spent catalysts[J]. Waste Management, 2024, 187: 198-206. doi: 10.1016/j.wasman.2024.07.022
    [8] ZHANG Q, WU Y, LI L, et al. Sustainable approach for spent V2O5–WO3/TiO2 catalysts management: Selective recovery of heavy metal vanadium and production of value-added WO3–TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510.
    [9] SHI Z, DING Y, REN J, et al. Oxidation leaching of NiMoV alloy enriched from spent hydrogenation catalysts and solvent extraction of Mo and V[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111714. doi: 10.1016/j.jece.2023.111714
    [10] SU Q, MIAO J, LI H, et al. Optimizing vanadium and tungsten leaching with lowered silicon from spent SCR catalyst by pre-mixing treatment[J]. Hydrometallurgy, 2018, 181: 230-239. doi: 10.1016/j.hydromet.2018.10.003
    [11] MA Z, LIU Y, ZHOU J, et al. Recovery of vanadium and molybdenum from spent petrochemical catalyst by Microwave-assisted leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(1): 33-40. doi: 10.1007/s12613-019-1707-y
    [12] CHOI I H, MOON G, LEE J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197: 163-169. doi: 10.1016/j.jclepro.2018.06.196
    [13] CHOI I H, MOON G, LEE J Y, et al. Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst[J]. Scientific Reports, 2019, 9(1): 12316. doi: 10.1038/s41598-019-48767-0
    [14] WANG B, YANG Q. Optimization of roasting parameters for recovery of vanadium and tungsten from spent SCR catalyst with composite roasting[J]. Processes, 2021, 9(11): 1923. doi: 10.3390/pr9111923
    [15] HUANG S, LIU J, ZHANG C, et al. Extraction of molybdenum from spent HDS catalyst by two-stage roasting followed by water leaching[J]. JOM, 2019, 71(12): 4681-4686. doi: 10.1007/s11837-019-03741-z
    [16] LIETTI L, NOVA I, RAMIS G, et al. Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts[J]. Journal of Catalysis, 1999, 187(2): 419-435. doi: 10.1006/jcat.1999.2603
    [17] Teng Y T. Recovery of waste SCR denitration catalyst resource components[D]. Nanjing: Southeast University, 2020. (滕玉婷. 废弃SCR脱硝催化剂资源化成分回收[D]. 南京: 东南大学, 2020.

    Teng Y T. Recovery of waste SCR denitration catalyst resource components[D]. Nanjing: Southeast University, 2020.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  44
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-27
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回