中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na2CO3强化钛精矿真空碳热还原富集Ti

张树东 宋兵 姜洋 李博 龙显泽 黄润

张树东, 宋兵, 姜洋, 李博, 龙显泽, 黄润. Na2CO3强化钛精矿真空碳热还原富集Ti[J]. 钢铁钒钛, 2025, 46(4): 27-34. doi: 10.7513/j.issn.1004-7638.2025.04.004
引用本文: 张树东, 宋兵, 姜洋, 李博, 龙显泽, 黄润. Na2CO3强化钛精矿真空碳热还原富集Ti[J]. 钢铁钒钛, 2025, 46(4): 27-34. doi: 10.7513/j.issn.1004-7638.2025.04.004
ZHANG Shudong, SONG Bing, JIANG Yang, LI Bo, LONG Xianze, HUANG Run. Na2CO3-enhanced vacuum carbothermal reduction for titanium enrichment from ilmenite concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 27-34. doi: 10.7513/j.issn.1004-7638.2025.04.004
Citation: ZHANG Shudong, SONG Bing, JIANG Yang, LI Bo, LONG Xianze, HUANG Run. Na2CO3-enhanced vacuum carbothermal reduction for titanium enrichment from ilmenite concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 27-34. doi: 10.7513/j.issn.1004-7638.2025.04.004

Na2CO3强化钛精矿真空碳热还原富集Ti

doi: 10.7513/j.issn.1004-7638.2025.04.004
基金项目: 贵州省基础研究计划(自然科学)重点项目(黔科合基础-ZD[2025]091);贵州省科技成果转化项目(黔科合成果[2024] 一般 149)。
详细信息
    作者简介:

    张树东,2000年出生,男,贵州麻江人,硕士生,研究方向为真空冶金,E-mail:zhangshudong2000@163.com

    通讯作者:

    黄润,1984年出生,男,四川隆昌人,博士,教授,主要从事资源循环利用方面研究,E-mail:rhuang@gzu.edu.cn

  • 中图分类号: TF823

Na2CO3-enhanced vacuum carbothermal reduction for titanium enrichment from ilmenite concentrate

  • 摘要: 钒钛磁铁矿经二次选矿可获得TiO2品位45%~50%的钛精矿,其中钛以与铁形成复杂氧化物的形式存在,且Ca、Mg、Al等杂质含量较高。针对目前常用的电炉熔炼法存在富集率低、污染废物产生量大及能源消耗较高等问题,采用理论计算与真空碳热还原试验相结合的方法,探究Na2CO3 作为添加剂对钛精矿的还原及钛富集行为的影响。结果表明:在1450 ℃还原温度、12%配碳量及 10% Na2CO3添加量条件下,体系可显著提高Si、Mg、Al、Ca等杂质的聚集效果,同时促进FeTiO3的还原以及Fe颗粒粗化。为后续磁选分离Fe以及盐酸浸出富集Ti提供了创新技术路线。
  • 图  1  钛精矿XRD图

    Figure  1.  XRD pattern of titanium concentrate

    图  2  真空碳热还原试验流程

    Figure  2.  Flow chart of vacuum carbothermic reduction experiment

    图  3  不同Na2CO3添加量下钛精矿主要物相变化

    (a) 4% Na2CO3; (b) 6% Na2CO3; (c) 8% Na2CO3; (d) 10% Na2CO3

    Figure  3.  Phase change of titanium concentrate with different Na2CO3 additions

    图  4  升温过程炉内压强变化

    Figure  4.  Pressure change in furnace during temperature rising

    图  5  不同比例Na2CO3还原试样的SEM和面扫描

    Figure  5.  SEM and surface scanning images of samples reduced by different proportions of Na2CO3

    (a) 10% Na2CO3;(b) 8% Na2CO3;(c) 6% Na2CO3;(d) 4% Na2CO3;(e) 0 Na2CO3

    图  6  还原试样的1000倍点扫描及成分

    (a)无添加剂;(b)添加10% Na2CO3

    Figure  6.  Point scan of the samples reduced (×1000)

    图  7  不同Na2CO3添加下还原残留物XRD变化

    Figure  7.  XRD patterns of reduced residues under different Na2CO3 additions

    图  8  不同Na2CO3添加下还原试样Fe颗粒粒径分布

    Figure  8.  Particle size distribution of Fe particles in reduced samples under varying Na2CO3 Additions

    表  1  钛精矿化学成分

    Table  1.   Chemical composition of titanium concentrate %

    TiO2Fe2O3MgOSiO2Al2O3CaONa2OSO3
    45.82640.3955.6774.2051.6670.8280.150.426
    下载: 导出CSV

    表  2  焦炭化学成分

    Table  2.   Chemical composition of coke %

    S P Solid carbon Volatile matter Ash Ash
    Fe2O3 CaO Al2O3 MgO SiO2
    0.65 0.12 83.66 2.22 14.12 8.91 6.01 22.26 2.16 47.79
    下载: 导出CSV
  • [1] XIA Y, WANG G, REN G Y, et al. Market analysis and development of TiO2 industry in 2023[J]. Coating and protection, 2024, 45(10): 35-42. (夏渊, 王岗, 任广义, 等. 2023年钛白粉行业状况与市场运行分析[J]. 涂层与防护, 2024, 45(10): 35-42.

    XIA Y, WANG G, REN G Y, et al. Market analysis and development of TiO2 industry in 2023[J]. Coating and protection, 2024, 45(10): 35-42.
    [2] HUANG R, LÜ X W, ZHANG K, et al. Carbothermic reduction and vacuum smelting of Panzhihua ilmenit concentrate[J]. Journal of Central South University (Natural Science Edition), 2014, 45(3): 684-689. (黄润, 吕学伟, 张凯, 等. 攀枝花钛精矿碳热还原-真空冶炼工艺[J]. 中南大学学报(自然科学版), 2014, 45(3): 684-689.

    HUANG R, LÜ X W, ZHANG K, et al. Carbothermic reduction and vacuum smelting of Panzhihua ilmenit concentrate[J]. Journal of Central South University (Natural Science Edition), 2014, 45(3): 684-689.
    [3] HUANG R, LÜ X D, WU Q H, et al. Vacuum carbothermal solid phase reduction of Panzhihua ilmenit concentrate[J]. Journal of Chongqing University, 2019, 42(4): 56-62. (黄润, 吕晓东, 武庆慧, 等. 攀枝花钛精矿真空碳热固相还原[J]. 重庆大学学报, 2019, 42(4): 56-62. doi: 10.11835/j.issn.1000-582X.2019.04.007

    HUANG R, LÜ X D, WU Q H, et al. Vacuum carbothermal solid phase reduction of Panzhihua ilmenit concentrate[J]. Journal of Chongqing University, 2019, 42(4): 56-62. doi: 10.11835/j.issn.1000-582X.2019.04.007
    [4] TONG S, AI L Q, HONG L K, et al. Reduction of Chengde vanadium titanium magnetite concentrate by microwave enhanced Ar–H2 atmosphere[J]. International Journal of Hydrogen Energy, 2024, 49: 42-48. doi: 10.1016/j.ijhydene.2023.06.219
    [5] DENG G Z. titanium metallurgy[M]. Beijing : Metallurgical Industry Press, 2010. (邓国珠. 钛冶金[M]. 北京: 冶金工业出版社, 2010.

    DENG G Z. titanium metallurgy[M]. Beijing : Metallurgical Industry Press, 2010.
    [6] LÜ X D. Study on the preparation of high-quality titanium-rich materials from ilmenite by combined beneficiation and metallurgy process[D]. Chongqing: Chongqing University, 2023. (吕晓东. 钛铁矿选冶联合工艺制备高品质富钛料研究[D]. 重庆: 重庆大学, 2023.

    LÜ X D. Study on the preparation of high-quality titanium-rich materials from ilmenite by combined beneficiation and metallurgy process[D]. Chongqing: Chongqing University, 2023.
    [7] WU Q Z. Reseach on kinetics of vacuum carbothermalreduction of low-grade phosphate rock[D]. Guizhou: Guizhou University, 2021. (伍秦至. 真空碳热还原中低品位磷矿的动力学研究[D]. 贵州: 贵州大学, 2021.

    WU Q Z. Reseach on kinetics of vacuum carbothermalreduction of low-grade phosphate rock[D]. Guizhou: Guizhou University, 2021.
    [8] WU Q H. Process optimization and mechanism study of vacuum carbothermic reduction of medium-low grade phosphate rock [D]. Guizhou: Guizhou University, 2021. (武庆慧. 真空碳热还原中低品位磷矿的工艺优化及机理研究[D]. 贵州: 贵州大学, 2021.

    WU Q H. Process optimization and mechanism study of vacuum carbothermic reduction of medium-low grade phosphate rock [D]. Guizhou: Guizhou University, 2021.
    [9] WANG L Z, JIANG C L, ZHU J X, et al. Occurrence state of titanium in vanadium-titanium magnetite ore from Panxi region[J]. Mining and Metallurgy Engineering, 2024, 44(5): 84-88. (王利珍, 姜楚灵, 朱家祥, 等. 攀西某钒钛磁铁矿中钛的赋存状态研究[J]. 矿冶工程, 2024, 44(5): 84-88. doi: 10.3969/j.issn.0253-6099.2024.05.017

    WANG L Z, JIANG C L, ZHU J X, et al. Occurrence state of titanium in vanadium-titanium magnetite ore from Panxi region[J]. Mining and Metallurgy Engineering, 2024, 44(5): 84-88. doi: 10.3969/j.issn.0253-6099.2024.05.017
    [10] YUE Y H, HUANG R, LIU P S, et al. Vacuum carbothermal reduction experiment for ilmenite concentrate from Panzhihua[J]. China Metallurgy, 2016, 26(7): 21-25. (岳跃辉, 黄润, 刘鹏胜, 等. 攀枝花钛精矿的真空碳热还原试验[J]. 中国冶金, 2016, 26(7): 21-25.

    YUE Y H, HUANG R, LIU P S, et al. Vacuum carbothermal reduction experiment for ilmenite concentrate from Panzhihua[J]. China Metallurgy, 2016, 26(7): 21-25.
    [11] CHONG X X, LUAN W L, WANG F X, et al. Overview of the current situation of global titanium resources and the trend of titanium consumption in China[J]. Mineral protection and utilization, 2020, 40(2): 162-170. (崇霄霄, 栾文楼, 王丰翔, 等. 全球钛资源现状概述及我国钛消费趋势[J]. 矿产保护与利用, 2020, 40(2): 162-170.

    CHONG X X, LUAN W L, WANG F X, et al. Overview of the current situation of global titanium resources and the trend of titanium consumption in China[J]. Mineral protection and utilization, 2020, 40(2): 162-170.
    [12] YUE Y H. Experimental study on vacuum carbon thermal reductionof ilmenite concentrate[D]. Guizhou: Guizhou University, 2017. (岳跃辉. 钛精矿的真空碳热还原实验研究[D]. 贵州: 贵州大学, 2017.

    YUE Y H. Experimental study on vacuum carbon thermal reductionof ilmenite concentrate[D]. Guizhou: Guizhou University, 2017.
    [13] LIU J, CHENG G, LIU J, et al. Oxidation kinetics of a low-grade vanadiferous titanomagnetite concentrate with high titanium[J]. Journal of Physics, 2022, 230: 6-12.
    [14] QIAO L N. X-ray fluorescence spectrometric analysis of titanium ores and concentrates[J]. China Metals Bulletin, 2024(8): 74-76. (乔丽娜. 钛矿石与钛精矿X射线荧光光谱分析研究[J]. 中国金属通报, 2024(8): 74-76. doi: 10.3969/j.issn.1672-1667.2024.15.025

    QIAO L N. X-ray fluorescence spectrometric analysis of titanium ores and concentrates[J]. China Metals Bulletin, 2024(8): 74-76. doi: 10.3969/j.issn.1672-1667.2024.15.025
    [15] LÜ X D. Kinetic study on vacuum carbothermic reduction of titanium concentrate[D]. Guizhou: Guizhou University, 2019. (吕晓东. 真空碳热还原钛精矿的动力学研究[D]. 贵州: 贵州大学, 2019.

    LÜ X D. Kinetic study on vacuum carbothermic reduction of titanium concentrate[D]. Guizhou: Guizhou University, 2019.
    [16] ZHAO S F. Study on the reduction and volatilization mechanism of iron in the process of vacuum carbothermic reduction of Fe-Ti-O system[D]. Guizhou: Guizhou University, 2022. (赵世翻. 真空碳热还原Fe-Ti-O体系过程中铁的还原与挥发机理研究[D]. 贵州: 贵州大学, 2022.

    ZHAO S F. Study on the reduction and volatilization mechanism of iron in the process of vacuum carbothermic reduction of Fe-Ti-O system[D]. Guizhou: Guizhou University, 2022.
    [17] XIAO J. Effective extraction of titanium and iron from coarse anatase concentrate[J]. JOM, 74(10): 3833-3842.
    [18] SHI Q. A novel process for direct reduction of titanium concentrate pellets in a gas-based shaft furnace[J]. Journal of Sustainable Metallurgy, 2023: 1620-1623.
    [19] WANG S W, TANG J, ZHANG C D, et al. Research on ore blending of vanadium-titanium magnetite based on hydrogen-based shaft furnace reduction & electric furnace me lting separation[C]/ / Proceedings of the 12 th Annual Youth Academic Conference of the Chinese Academy of Metallurgy and the First Salon of Young Metallurgical Scientists on " Carbon Neutralization " (I). China Metallurgical Society, Youth Working Committee of China Metallurgical Society, 2024: 7. (王世伟, 唐珏, 张彩东, 等. 基于氢基竖炉还原-电炉熔分的钒钛磁铁矿配矿研究[C]//第十二届中国金属学会青年学术年会暨首届〝碳中和〞冶金青年科学家沙龙论文集(一). 中国金属学会、中国金属学会青年工作委员会, 2024: 7.

    WANG S W, TANG J, ZHANG C D, et al. Research on ore blending of vanadium-titanium magnetite based on hydrogen-based shaft furnace reduction & electric furnace me lting separation[C]/ / Proceedings of the 12 th Annual Youth Academic Conference of the Chinese Academy of Metallurgy and the First Salon of Young Metallurgical Scientists on " Carbon Neutralization " (I). China Metallurgical Society, Youth Working Committee of China Metallurgical Society, 2024: 7.
    [20] LIAO Q, YI L, CHENG J G, et al. Study on beneficiation technology of titanium recovery from iron tailings[J]. Hunan Nonferrous Metals, 2024, 40(5): 13-16. (廖乾, 易峦, 程建国, 等. 某铁尾矿回收钛选矿工艺研究[J]. 湖南有色金属, 2024, 40(5): 13-16. doi: 10.3969/j.issn.1003-5540.2024.05.004

    LIAO Q, YI L, CHENG J G, et al. Study on beneficiation technology of titanium recovery from iron tailings[J]. Hunan Nonferrous Metals, 2024, 40(5): 13-16. doi: 10.3969/j.issn.1003-5540.2024.05.004
    [21] LÜ C. A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction–melting–magnetic separation processing[J]. JOM, 69(10): 1801-1805.
    [22] LÜ W, BAI C, LÜ X, et al. Carbothermic reduction of ilmenite concentrate in semi-molten state by adding sodium sulfate[J]. Powder Technology, 2018, 340: 354-361. doi: 10.1016/j.powtec.2018.09.043
    [23] JING J, GUO Y, WANG S, et al. Recent progress in electric furnace titanium slag processing and utilization: A review[J]. Crystals, 2022, 12(7): 958-978. doi: 10.3390/cryst12070958
    [24] KIM J, AZIMI G. Technospheric mining of niobium and titanium from electric arc furnace slag[J]. Hydrometallurgy, 2020, 191: 105203. doi: 10.1016/j.hydromet.2019.105203
    [25] LÜ X D, CHEN D, XIN Y T, et al. Effect of sodium carbonate addition on carbothermic reduction of ilmenite concentrate[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 1010-1018. (吕晓东, 陈丹, 辛云涛, 等. 添加剂Na2CO3对钛精矿碳热还原的影响(英文)[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 1010-1018. doi: 10.1016/S1003-6326(22)65850-3

    LÜ X D, CHEN D, XIN Y T, et al. Effect of sodium carbonate addition on carbothermic reduction of ilmenite concentrate[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 1010-1018. doi: 10.1016/S1003-6326(22)65850-3
    [26] EL-TAWIL SZ, MORSI IM, YEHIA A, et al. Alkali reductive roasting of ilmenite ore[J]. Canadian Metallurgical Quarterly, 1996, 35(1): 31-37. doi: 10.1179/cmq.1996.35.1.31
    [27] ZHAO W, CHU M, WANG H, et al. Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process[J]. Powder Technology, 2019, 342: 214-223. doi: 10.1016/j.powtec.2018.09.069
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回