中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光电流法的钛白粉耐候性快速评价方法研究

袁浩民 钟山 唐思扬 周雪梅 李红娇 鲁峰 梁斌

袁浩民, 钟山, 唐思扬, 周雪梅, 李红娇, 鲁峰, 梁斌. 基于光电流法的钛白粉耐候性快速评价方法研究[J]. 钢铁钒钛, 2025, 46(4): 35-42. doi: 10.7513/j.issn.1004-7638.2025.04.005
引用本文: 袁浩民, 钟山, 唐思扬, 周雪梅, 李红娇, 鲁峰, 梁斌. 基于光电流法的钛白粉耐候性快速评价方法研究[J]. 钢铁钒钛, 2025, 46(4): 35-42. doi: 10.7513/j.issn.1004-7638.2025.04.005
YUAN Haomin, ZHONG Shan, TANG Siyang, ZHOU Xuemei, LI Hongjiao, LU Feng, LIANG Bin. Research on the rapid evaluation method of weather resistance of titanium dioxide based on photocurrent method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 35-42. doi: 10.7513/j.issn.1004-7638.2025.04.005
Citation: YUAN Haomin, ZHONG Shan, TANG Siyang, ZHOU Xuemei, LI Hongjiao, LU Feng, LIANG Bin. Research on the rapid evaluation method of weather resistance of titanium dioxide based on photocurrent method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 35-42. doi: 10.7513/j.issn.1004-7638.2025.04.005

基于光电流法的钛白粉耐候性快速评价方法研究

doi: 10.7513/j.issn.1004-7638.2025.04.005
基金项目: 四川省重点研发计划(2022YFS0448) 。
详细信息
    作者简介:

    袁浩民,2000年出生,男,四川自贡人,硕士,从事钛白粉表面修饰技术研究,E-mail:2624391174@qq.com

    通讯作者:

    钟山,1985年出生,男,四川内江人,博士,副教授,从事矿产资源清洁高效利用研究,E-mail: zhongshan@scu.edu.cn

  • 中图分类号: TF823

Research on the rapid evaluation method of weather resistance of titanium dioxide based on photocurrent method

  • 摘要: 钛白粉具有较好的光催化活性,通常需对其进行后处理以抑制光催化活性并提高其耐候性。而评估钛白粉光催化活性对基材耐候性的影响通常耗时较长,难以满足实际生产过程中快速检测以反馈指导工艺调整的需求。基于光电流测试法,融合炭黑底色法,结合不同钛白粉在聚丙烯 (PP) 树脂和聚氯乙烯 (PVC) 树脂体系中的紫外加速老化结果,验证光电流测试方法作为钛白粉在PP、PVC体系中耐候性快速评价手段的实用性。结果表明,以光泽度保有率 (Gr) 作为老化程度的量化指标,通过光电流与分散性参数可较好地定量预测不同钛白粉在PP与PVC体系中的耐候性。可为钛白粉在不同体系中耐候性的快速评价方法开发提供指导,进而为钛白粉工艺优化提供支持。
  • 图  1  电极表面色相原理

    Figure  1.  Electrode surface hue schematic diagram

    图  2  R3光电流散点示意

    Figure  2.  R3 photocurrent scatter diagram

    图  3  有无光照条件下光电流-时间关系

    Figure  3.  Photocurrent-time graphs with and without irradiation

    (a) BLANK; (b) R4; (c) RPC1; (d) R2; (e) RSA; (f) R3; (g) RPC2; (h) R1

    图  4  加入不同钛白粉后的PVC样品老化前后对比

    Figure  4.  Comparison of PVC samples with addition of different titanium dioxide before and after aging

    (a1)(a2) R1; (b1)(b2) R4; (c1)(c2) RPC1; (d1)(d2) R2; (e1)(e2) RSA; (f1)(f2) R3; (g1)(g2) RPC2; (h1)(h2) BLANK

    图  5  加入不同钛白粉后的PP样品老化前后对比

    Figure  5.  Comparison of PP samples with addition of different titanium dioxide before and after aging

    (a) R1; (b) R4; (c) RPC1; (d) R2; (e) RSA; (f) R3; (g) RPC2; (h) BLANK

    图  6  Ib与PVC和PP老化结果的线性拟合

    Figure  6.  Linear fitting of ∆Ib with the aging results of PVC and PP

    (a) PVC; (b) PP

    图  7  PVC 与PP老化程度试验值与预测值对比

    (a) PVC; (b) PP

    Figure  7.  Comparison between the measured and predicted aging extent values of PVC and PP

    表  1  钛白粉生产及包膜方式

    Table  1.   Titanium dioxide production and coating method

    编号生产方式包膜方式
    R1氯化法铝包膜、疏水改性
    RPC1氯化法致密铝包膜、疏水改性,聚碳酸酯专用(PC)
    RPC2氯化法致密铝包膜、疏水改性,聚碳酸酯专用
    R2氯化法铝包膜、疏水改性
    RSA氯化法致密硅铝包膜、疏水改性
    R3氯化法铝包膜、疏水改性
    R4氯化法铝包膜、疏水改性
    下载: 导出CSV

    表  2  聚氯乙烯(PVC)配方

    Table  2.   Polyvinyl chloride (PVC) formulation

    添加剂试剂来源份数
    PVC忧悦塑胶100
    邻苯二甲酸二辛脂(简称DOP,增塑剂)鑫洋化工40
    三盐基硫酸铅(稳定剂)宏泰化学3
    二盐基亚磷酸铅(稳定剂)宏泰化学2
    钙锌复合稳定剂宏泰化学3
    聚乙烯蜡(简称PE蜡,外润滑剂)宏泰化学0.5
    钛白粉3
    下载: 导出CSV

    表  3  聚丙烯(PP)配方

    Table  3.   Polypropylene (PP) formulation

    添加剂试剂来源份数
    PP浙江石油化工有限公司100
    钛白粉3
    滑石粉优索样品20
    下载: 导出CSV

    表  4  有无光照条件下的平衡电流变化∆Ib

    Table  4.   Variation of balance current ∆Ib with and without irradiation

    钛白粉牌号平衡电流变化∆Ib ×109/A
    R15.66
    R410.20
    RPC12.63
    R213.90
    RSA3.07
    R312.00
    RPC22.64
    下载: 导出CSV

    表  5  电极表面CIE Lab测试结果

    Table  5.   CIE Lab test results of electrode surface

    钛白粉牌号CIE LCIE aCIE b
    R164.71−0.06−4.21
    R461.40−0.21−5.31
    RPC161.14−0.24−6.09
    R260.80−0.20−6.05
    RSA65.40−0.28−4.86
    R356.82−0.06−6.27
    RPC264.970.68−2.20
    下载: 导出CSV

    表  6  PVC样品老化后的Gr

    Table  6.   Gr of PVC samples after aging

    钛白粉牌号PVC的Gr /%
    R144
    R424
    RPC177
    R220
    RSA39
    R329
    RPC244
    BLANK21
    下载: 导出CSV

    表  7  PP样品老化后的Gr

    Table  7.   Gr of PP samples after aging

    钛白粉牌号PP的Gr/%
    R151
    R446
    RPC165
    R239
    RSA64
    R338
    RPC255
    BLANK48
    下载: 导出CSV

    表  8  Ib和CIE b值双参数多元线性拟合

    Table  8.   Two-parameter multivariate linear fitting of ∆Ib and CIE b values

    PVC PP
    拟合方程 Gr = −4.27×107Ib
    0.070b+0.35
    Gr = −2.6×107Ib
    0.027b+0.56
    R2 0.79 0.95
    显著性 Sig.<0.05 Sig.<0.005
    下载: 导出CSV
  • [1] DIEBOLD M P. Optimizing the benefits of TiO2 in paints[J]. Journal of Coatings Technology and Research, 2019, 17: 1-17.
    [2] DIEBOLD M P. Effect of TiO2 pigment on gloss retention: A two-component approach[J]. Journal of Coatings Technology and Research, 2009, 6: 32-39.
    [3] LIU L X, JIANG Z G, LI D X, et al. Research on preparation technology of titanium dioxide for water-based paint[J]. Modern Paint & Finishing, 2018, 21(3): 5-7, 10. (刘立新, 姜志刚, 李冬旭, 等. 水性涂料钛白粉制备工艺研究[J]. 现代涂料与涂装, 2018, 21(3): 5-7, 10.

    LIU L X, JIANG Z G, LI D X, et al. Research on preparation technology of titanium dioxide for water-based paint[J]. Modern Paint & Finishing, 2018, 21(3): 5-7, 10.
    [4] DUAN H T, HOU Q L, LI Y L, et al. Study on surface modification of titanium dioxide by zirconia-silicon binary coating[J]. Packaging Journal, 2023, 15(4): 75-80. (段海婷, 侯清麟, 李依林, 等. 钛白粉表面锆-硅二元包膜改性研究[J]. 包装学报, 2023, 15(4): 75-80.

    DUAN H T, HOU Q L, LI Y L, et al. Study on surface modification of titanium dioxide by zirconia-silicon binary coating[J]. Packaging Journal, 2023, 15(4): 75-80.
    [5] WU H X, WANG T J, JIN Y. Morphology “phase diagram” of the hydrous alumina coating on TiO2 particles during aqueous precipitation[J]. Industrial & Engineering Chemistry Research, 2006, 45(15): 5274-5278.
    [6] GAO H, QIAO B, WANG T J, et al. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 189-197.
    [7] WU J C, LU R F, LIU C, et al. Preparation and performance of different aluminum filmson titanium dioxide surface[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 66-72.
    [8] SHI R, QIAN H J, LU Z Y. Tuning cavitation and crazing in polymer nanocomposite glasses containing bimodal grafted nanoparticles at the nanoparticle/polymer interface[J]. Physical Chemistry Chemical Physics, 2019, 21(13): 7115-7126. doi: 10.1039/C9CP00208A
    [9] FEDOR G R. Comparison between natural weathering and fluorescent UV exposures: UVA-340 lamp test results[J]. Shanghai Coatings, 2018, 56(6): 37-43. (FEDOR G R. 自然老化试验和荧光紫外曝晒试验的对比: UVA-340灯管曝晒试验结果[J]. 上海涂料, 2018, 56(6): 37-43.

    FEDOR G R. Comparison between natural weathering and fluorescent UV exposures: UVA-340 lamp test results[J]. Shanghai Coatings, 2018, 56(6): 37-43.
    [10] WERNER A J. Titanium dioxide pigment coated with silica and alumina: US3437502A[P]. 1968-03-08.
    [11] DIEBOLD M P, KWOKA R A, MEHR S R, et al. Rapid assessment of TiO2 pigment durability via the acid solubility test[J]. Journal of Coatings Technology and Research, 2004, 1(3): 239-241. doi: 10.1007/s11998-004-0018-y
    [12] ZHONG C L. Study on inorganic organic coating and weather resistance of rutile titanium dioxide[J]. Shanxi Chemical Industry, 2024, 44(11): 34-36. (钟成林. 金红石型钛白粉无机-有机包覆及耐候性研究[J]. 山西化工, 2024, 44(11): 34-36.

    ZHONG C L. Study on inorganic organic coating and weather resistance of rutile titanium dioxide[J]. Shanxi Chemical Industry, 2024, 44(11): 34-36.
    [13] LUO J, WANG L, WANG Z. Evaluation methods of weathering resistance of titanium dioxide and its application performance[J]. Shanghai Coatings, 2023, 61(2): 44-48. (罗蛟, 王玲, 王镇. 钛白粉耐候性评价方法及其应用表现[J]. 上海涂料, 2023, 61(2): 44-48.

    LUO J, WANG L, WANG Z. Evaluation methods of weathering resistance of titanium dioxide and its application performance[J]. Shanghai Coatings, 2023, 61(2): 44-48.
    [14] ODLING G, ROBERTSON N. Why is anatase a better photocatalyst than rutile? The importance of free hydroxyl radicals[J]. Chem Sus Chem, 2015, 8(11): 1838-40. doi: 10.1002/cssc.201500298
    [15] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. doi: 10.1038/238037a0
    [16] HE Z J, CUI W, HE T. Photoelectrochemical approach for weatherability assessment of TiO2 pigments[J]. Coating and Protection, 2020, 41(11): 21-25. (贺志娟, 崔伟, 何涛. 钛白粉耐候性的光电化学评价新方法[J]. 涂层与防护, 2020, 41(11): 21-25.

    HE Z J, CUI W, HE T. Photoelectrochemical approach for weatherability assessment of TiO2 pigments[J]. Coating and Protection, 2020, 41(11): 21-25.
    [17] CHEMOURS. Polymers, light and the science of TiO2 [EB/OL]. https://www.chemours.cn/-/media/files/tipure/legacy/polymers-light-science-tio2.pdf?rev=ea949113920049298ad4d518211bb314.
    [18] DIEBOLD M. Prediction of paint chalking rates from early exposure data[J]. Journal of Coatings Technology and Research, 2023, 20(4): 1179-1191. doi: 10.1007/s11998-022-00727-6
    [19] KAUSCH H H. Crazing in polymers[C]. 1983.
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  49
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回