Study on microstructure and mechanical properties of bionic bone structure AZ91-Ti cross-composites
-
摘要: 采用粉末冶金法结合无压渗透技术制备了仿生骨结构AZ91-Ti交叉复合材料,实现了强度和断裂韧性的同时提升。微观测试表明,Ti相连续分布且呈特定仿生骨架结构,Mg相交织于复合Ti骨架的连通孔中。AZ91-Ti界面处形成锯齿状Al2Ti相,增强了界面结合强度。力学测试表明,体积分数为50%的AZ91-Ti交叉复合材料具有最佳力学性能,屈服强度、抗拉强度、断裂韧性分别为383 MPa±3.5 MPa、489 MPa±4.9 MPa、36.2 MPa·m0.5。复合材料强度的提升来源于高仿生Ti骨架的载荷作用以及优异的界面结合,复合材料的增韧行为来源于Ti骨架仿生结构引起的裂纹绕曲以及Ti相拔出的能量逸散。Abstract: In this paper, AZ91-Ti cross composites with bionic bone structure were prepared by powder metallurgy combined with pressureless infiltration technology, which achieved the simultaneous improvement of strength and fracture toughness. Microscopic tests show that the Ti phase is continuously distributed and exhibits a specific bionic skeleton structure, and the Mg phase is interwoven into the connected pores of the Ti skeleton. The serrated Al2Ti phase is formed at the AZ91-Ti interface, which enhances the interfacial bonding strength. The mechanical tests show that the 50vol% AZ91-Ti cross-composite has the best mechanical properties. The yield strength, tensile strength and fracture toughness are 383 MPa±3.5 MPa, 489 MPa±4.9 MPa and 36.2 MPa·m0.5, respectively. The improvement of the strength of the composite is due to the load effect of the high bionic Ti skeleton and the excellent interface bonding. The toughening behavior of the composites comes from the crack winding caused by the Ti skeleton bionic structure and the energy dissipation of the Ti phase extraction.
-
Key words:
- bionic bone structure /
- cross-composites /
- microstructure /
- mechanical properties
-
表 1 Ti颗粒化学成分
Table 1. Ti particle chemical compositions table
% 元素 主元素 杂质元素 Ti Fe C N H 标准值 Bal 0.15 ≤0.10 ≤0.03 ≤0.015 实测值 Bal 0.014 ≤0.005 ≤0.013 ≤ 0.0056 表 2 AZ91化学成分
Table 2. AZ91 chemical composition table
% Al Zn Mn Si Cu Ni Fe Be Mg 8.99 0.771 0.268 0.0092 0.0016 0.0007 0.0031 0.0008 Bal. 表 3 Ti骨架实测孔隙率及平均值
Table 3. The measured porosity and average value of Ti skeleton
% 理论孔隙率 实测1 实测2 实测3 平均值 40 38.9 39.7 40.2 39.6 50 49.3 51.4 50.1 50.3 60 58.7 59.9 59.4 59.3 表 4 AZ91-Ti复合材料密度
Table 4. Density of AZ91-Ti composites
仿生材料 理论密度/(g·cm−3) 测量密度/(g·cm−3) 致密度/% 40%AZ91-Ti 2.834 2.802 98.87 50%AZ91-Ti 2.593 2.551 98.38 60%AZ91-Ti 2.390 2.366 98.99 表 5 AZ91-Ti、AZ91、Ti拉伸性能和比强度
Table 5. Tensile properties and specific strength of AZ91-Ti, AZ91 and Ti
材料 屈服强度/MPa 抗拉强度/MPa 应变/% 比强度/
(N·m·kg−1)40%AZ91-Ti 435±4.8 496±3.2 2.2±0.8 177.0 50%AZ91-Ti 383±3.5 489±4.9 3.5±1.1 191.7 60%AZ91-Ti 335±4.1 465±3.7 3.8±1.0 196.5 AZ91 124±1.7 217±2.4 5.1±0.6 119.3 Ti 410±3.1 550±4.2 12.7±1.3 122.0 表 6 AZ91-Ti复合材料的杨氏模量和断裂韧性
Table 6. Young’s modulus and fracture toughness of AZ91-Ti composites
仿生材料 E/GPa JIC/
(kJ·m−2)JSS/
(kJ·m−2)KQ/
(MPa·m0.5)KSS/
(MPa·m0.5)40%AZ91-Ti 55.9 14.3 25.8 28.3 37.9 50%AZ91-Ti 54.9 23.9 41.1 36.2 47.5 60%AZ91-Ti 54.3 19.5 36.6 32.5 44.6 -
[1] BARTHELAT F, RABIEI R. Toughness amplification in natural composites[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4): 829-840. doi: 10.1016/j.jmps.2011.01.001 [2] JOHNSON A P, SABU C, NIVITHA K P, et al. Bioinspired and biomimetic micro- and nanostructures in biomedicine[J]. Journal of Controlled Release, 2022, 343: 724-754. doi: 10.1016/j.jconrel.2022.02.013 [3] SHARMA A S, YADAV S, BISWAS K, et al. High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement[J]. Materials Science and Engineering: R: Reports, 2018, 131: 1-42. doi: 10.1016/j.mser.2018.04.003 [4] SIDDIQUE S H, HAZELL P J, WANG H, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review[J]. Additive Manufacturing, 2022, 58: 103051. doi: 10.1016/j.addma.2022.103051 [5] ZHANG J, LIU Z Q, WANG S G, et al. Hierarchically structured W-Cu composite with high strength by reactive melt infiltration[J]. Scripta Materialia, 2025, 259: 116544. doi: 10.1016/j.scriptamat.2025.116544 [6] HAN T L, HOU C, ZHAO Z, et al. W-Cu composites with excellent comprehensive properties[J]. Composites Part B: Engineering, 2022, 233: 109664. doi: 10.1016/j.compositesb.2022.109664 [7] NAZARI K, TRAN P, TAN P, et al. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: a review[J]. Open Ceramics, 2023, 15: 100399. doi: 10.1016/j.oceram.2023.100399 [8] DOU C X, ZHANG M Y, REN D C, et al. Bi-continuous Mg-Ti interpenetrating-phase composite as a partially degradable and bioactive implant material[J]. Journal of Materials Science & Technology, 2022, 146: 211-220. [9] LI Z, MO H T, TIAN J H, et al. A novel Ti/Al interpenetrating phase composite with enhanced mechanical properties[J]. Materials Letters, 2023, 357: 135723. [10] VENKATESH R, HOSSAIN I, MOHANAVEL V, et al. Analysis and optimization of machining parameters of AZ91 alloy nanocomposite with the influences of nano ZrO2 through vacuum diecast process[J]. Heliyon, 2024, 10(15): e34931. doi: 10.1016/j.heliyon.2024.e34931 [11] YAO F J, YOU G Q, WANG L, et al. Design, fabrication, microstructure, and mechanical properties of interlayer-free vacuum diffusion bonding Mg/Ti composites[J]. Vacuum, 2022, 199: 110947. doi: 10.1016/j.vacuum.2022.110947 [12] YUAN M N, LI L, WANG Z J. Study of the microstructure modulation and phase formation of TiAl3Ti laminated composites[J]. Vacuum, 2018, 157: 481-486. doi: 10.1016/j.vacuum.2018.09.002 [13] XIAO L, LIU T T, CHU Y, et al. Effect of Ti particles on the microstructure and mechanical properties of AZ91 magnesium matrix composites[J]. Acta Metallurgica Sinica (English Letters), 2023, 37(3): 513-524. [14] TANG B, LI J B, YE J L, et al. Strengthening mechanism and microstructure of deformable Ti particles reinforced AZ91 composite[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1935-1945. doi: 10.1007/s40195-022-01428-0 [15] GAO P F, HAN S L, ZHANG Y H, et al. Investigation on the interface bonding and reinforcement mechanism of nano Ti/AZ31 magnesium matrix composites[J]. Journal of Materials Research and Technology, 2024, 30: 4908-4919. doi: 10.1016/j.jmrt.2024.04.201 [16] LUO H, LI J B, YE J L, et al. Enhancing the mechanical properties and thermal conductivity of Ti/AZ91 composites through integrated extrusion and rolling continuous deformation processing[J]. Journal of Alloys and Compounds, 2024, 1002: 175506. doi: 10.1016/j.jallcom.2024.175506 [17] CHEN X, XU J, ZHENG K H, et al. Effect of Ti particles on microstructure and mechanical properties of Mg-9Al-1Zn based composite sheets[J]. Journal of Materials Research and Technology, 2023, 27: 1242-1257. doi: 10.1016/j.jmrt.2023.10.024 [18] AN Y M, YANG Y, JIA Y N, et al. Mechanical properties of biomimetic ceramic with Bouligand architecture[J]. Journal of the American Ceramic Society, 2021, 105(4): 2385-2391. [19] ZHANG M Y, ZHAO N, YU Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures[J]. Nat Commun, 2022, 13, 3247. [20] SIVAKUMAR P M, YETISGIN A A, DEMIR E, et al. Polysaccharide-bioceramic composites for bone tissue engineering: a review[J]. International Journal of Biological Macromolecules, 2023, 250: 126237. doi: 10.1016/j.ijbiomac.2023.126237 [21] NOGUEIRA L F B, MANIGLIA B C, BUCHET R, et al. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021, 110(4): 967-983. [22] SOLEYMANI S, NAGHIB S M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration[J]. Heliyon, 2023, 9(9): e19363. doi: 10.1016/j.heliyon.2023.e19363 [23] BOSKEY A L. Mineralization, structure and function of bone[M]// MARKUS J S, SIMON P R, JOHN P B. Dynamics of bone and cartilage metabolism. Salt Lake City, Academic Press, 2006: 201-212. [24] ZHANG Y, TAN G Q, ZHANG M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales[J]. Journal of Materials Science & Technology, 2022, 96: 21-30. [25] ROMANOS G E, DELGADO-RUIZ R A, NICOLAS-SILVENTE A I. Volumetric changes in morse taper connections after implant placement in dense bone. in-vitro study[J]. Materials, 2020, 13(10): 2306. doi: 10.3390/ma13102306 [26] SCHMIDT I, PAPASTAVROU A, STEINMANN P. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 24(11): 1274-1285. [27] FAN Z H, LIU H X, DING Z Z, et al. Simulation of cortical and cancellous bone to accelerate Tissue regeneration[J]. Advanced Functional Materials, 2023, 33(33): : 2301839. [28] HUFENBACH W, ULLRICH H J, GUDE M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires[J]. Archives of Civil and Mechanical Engineering, 2012, 12: 265. doi: 10.1016/j.acme.2012.06.005 [29] LI Q Y, LI J, HE G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire[J]. Materials Science and Engineering: A, 2017, A680: 92. [30] WU S X, WANG S R, WEN D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement[J]. Applied Sciences, 2018, 8: 2012. doi: 10.3390/app8112012 [31] ZOU C M, LIU Y, YANG X, et al. Effect of sintering neck on compressive mechanical properties of porous titanium[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s485-s490. doi: 10.1016/S1003-6326(12)61750-6 [32] JIANG S, HUANG L J, AN Q, et al. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81: 10-15. doi: 10.1016/j.jmbbm.2018.02.017 [33] PU D M, WU S F, YANG H, et al. Effect of Ti particles on microstructure and mechanical properties of TiP/AZ91 composites[J]. Journal of Materials Research and Technology, 2023, 22: 1362-1374. doi: 10.1016/j.jmrt.2022.12.028 [34] TAN Z, JIANG X Y, XI Z, et al. Fabrication of Zr-based bulk metallic glass lattice structure with high specific strength by laser powder bed fusion[J]. Additive Manufacturing, 2024, 95: 104556. doi: 10.1016/j.addma.2024.104556 [35] ZHANG P, ZENG W D, ZHANG F, et al. Fracture toughness of Ti2AlNb alloy with different Al content: Intrinsic mechanism, extrinsic mechanism and prediction model[J]. Journal of Alloys and Compounds, 2023, 952: 170068. doi: 10.1016/j.jallcom.2023.170068 [36] ASTM E1820-13. Standard test method for measurement of fracture toughness[S](ASTM International, 2013). [37] ASMUS S M F, SAKAKURA S, PEZZOTTI G. Hydroxyapatite toughened by silver inclusions[J]. Journal of Composite Materials, 2003, 37(23): 2117-2129. doi: 10.1177/002199803036242 [38] OUYANG S, LIU Y, HUANG Q, et al. Effect of composition on in vitro degradability of Ti–Mg metal-metal composites[J]. Materials Science and Engineering: C, 2020, 107: 110327. doi: 10.1016/j.msec.2019.110327 [39] ZHAO G L, XIN L J, LI L, et al. Cutting force model and damage formation mechanism in milling of 70wt% Si/Al composite[J]. Chinese Journal of Aeronautics, 2022, 36(7): 114-128. [40] PEI Y B, HUANG T, CHEN F, et al. In-situ observation of crack evolution in Ti/Al laminated composite[J]. Composite Interfaces, 2019, 27(5): 435-448. -
下载: