中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生骨结构AZ91-Ti交叉复合材料显微组织和力学性能研究

谢湘中 蔡伟通 高鹏飞 张玉桧 韩胜利 郑开宏 潘复生

谢湘中, 蔡伟通, 高鹏飞, 张玉桧, 韩胜利, 郑开宏, 潘复生. 仿生骨结构AZ91-Ti交叉复合材料显微组织和力学性能研究[J]. 钢铁钒钛, 2025, 46(4): 43-51, 79. doi: 10.7513/j.issn.1004-7638.2025.04.006
引用本文: 谢湘中, 蔡伟通, 高鹏飞, 张玉桧, 韩胜利, 郑开宏, 潘复生. 仿生骨结构AZ91-Ti交叉复合材料显微组织和力学性能研究[J]. 钢铁钒钛, 2025, 46(4): 43-51, 79. doi: 10.7513/j.issn.1004-7638.2025.04.006
XIE Xiangzhong, CAI Weitong, GAO Pengfei, ZHANG Yuhui, HAN Shengli, ZHENG Kaihong, PAN Fusheng. Study on microstructure and mechanical properties of bionic bone structure AZ91-Ti cross-composites[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 43-51, 79. doi: 10.7513/j.issn.1004-7638.2025.04.006
Citation: XIE Xiangzhong, CAI Weitong, GAO Pengfei, ZHANG Yuhui, HAN Shengli, ZHENG Kaihong, PAN Fusheng. Study on microstructure and mechanical properties of bionic bone structure AZ91-Ti cross-composites[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 43-51, 79. doi: 10.7513/j.issn.1004-7638.2025.04.006

仿生骨结构AZ91-Ti交叉复合材料显微组织和力学性能研究

doi: 10.7513/j.issn.1004-7638.2025.04.006
基金项目: 广东省科学院建设国内一流研究机构行动专项资金项目(2020GDASYL-20200101001);广东省基础与应用基础研究重大项目(2020B0301030006)。
详细信息
    作者简介:

    谢湘中,2001年出生,男,汉族,湖南娄底人,硕士,主要从事钛颗粒增强镁基复合材料的研究,E-mail:18873806896@163.com

    通讯作者:

    蔡伟通,1986年出生,男,广东人,工学博士,副教授,主要从事纳米金属储氢功能材料、太阳能电池半导体材料研究,E-mail:mewtcai@gdut.edu.cn

  • 中图分类号: TF125,TG146.2

Study on microstructure and mechanical properties of bionic bone structure AZ91-Ti cross-composites

  • 摘要: 采用粉末冶金法结合无压渗透技术制备了仿生骨结构AZ91-Ti交叉复合材料,实现了强度和断裂韧性的同时提升。微观测试表明,Ti相连续分布且呈特定仿生骨架结构,Mg相交织于复合Ti骨架的连通孔中。AZ91-Ti界面处形成锯齿状Al2Ti相,增强了界面结合强度。力学测试表明,体积分数为50%的AZ91-Ti交叉复合材料具有最佳力学性能,屈服强度、抗拉强度、断裂韧性分别为383 MPa±3.5 MPa、489 MPa±4.9 MPa、36.2 MPa·m0.5。复合材料强度的提升来源于高仿生Ti骨架的载荷作用以及优异的界面结合,复合材料的增韧行为来源于Ti骨架仿生结构引起的裂纹绕曲以及Ti相拔出的能量逸散。
  • 图  1  AZ91-Ti复合材料的制备工艺

    Figure  1.  Preparation process of AZ91-Ti composite material

    图  2  不同尺寸Ti颗粒

    Figure  2.  Ti particles with different sizes

    (a) 1~4 mm Ti; (b) 500~1 000 µm Ti

    图  3  AZ91-Ti复合材料形貌

    Figure  3.  Morphology of AZ91-Ti composites

    (a)(d) 40%AZ91-Ti; (b)(e) 50%AZ91-Ti; (c)(f) 60%AZ91-Ti.

    图  4  50%AZ91-Ti复合材料分析结果

    Figure  4.  Analysis results of 50%AZ91-Ti composites

    (a)~(c) SEM; (d) XRD; (e)~(g) EDS

    图  5  AZ91-Ti复合材料力学性能统计结果

    Figure  5.  Stress-strain curves of AZ91-Ti composites

    图  6  AZ91-Ti复合材料拉伸断口形貌

    Figure  6.  The tensile fracture morphology of AZ91-Ti composites

    (a)(d) 40%AZ91-Ti; (b)(e) 50%AZ91-Ti; (c)(f) 60%AZ91-Ti

    图  7  AZ91-Ti复合材料断裂韧性

    Figure  7.  Fracture toughness of AZ91-Ti composites

    图  8  标准压紧C(T)型试样断裂截面形貌

    Figure  8.  Fracture cross-section morphology of standard pressed C(T)specimen

    (a)(d)(g) 40%AZ91-Ti; (b)(e)(h) 50%AZ91-Ti; (c)(f)(i) 60%AZ91-Ti

    表  1  Ti颗粒化学成分

    Table  1.   Ti particle chemical compositions table %

    元素 主元素 杂质元素
    Ti Fe C N H
    标准值 Bal 0.15 ≤0.10 ≤0.03 ≤0.015
    实测值 Bal 0.014 ≤0.005 ≤0.013 0.0056
    下载: 导出CSV

    表  2  AZ91化学成分

    Table  2.   AZ91 chemical composition table %

    AlZnMnSiCuNiFeBeMg
    8.990.7710.2680.00920.00160.00070.00310.0008Bal.
    下载: 导出CSV

    表  3  Ti骨架实测孔隙率及平均值

    Table  3.   The measured porosity and average value of Ti skeleton %

    理论孔隙率实测1实测2实测3平均值
    4038.939.740.239.6
    5049.351.450.150.3
    6058.759.959.459.3
    下载: 导出CSV

    表  4  AZ91-Ti复合材料密度

    Table  4.   Density of AZ91-Ti composites

    仿生材料理论密度/(g·cm−3)测量密度/(g·cm−3)致密度/%
    40%AZ91-Ti2.8342.80298.87
    50%AZ91-Ti2.5932.55198.38
    60%AZ91-Ti2.3902.36698.99
    下载: 导出CSV

    表  5  AZ91-Ti、AZ91、Ti拉伸性能和比强度

    Table  5.   Tensile properties and specific strength of AZ91-Ti, AZ91 and Ti

    材料屈服强度/MPa抗拉强度/MPa应变/%比强度/
    (N·m·kg−1)
    40%AZ91-Ti435±4.8496±3.22.2±0.8177.0
    50%AZ91-Ti383±3.5489±4.93.5±1.1191.7
    60%AZ91-Ti335±4.1465±3.73.8±1.0196.5
    AZ91124±1.7217±2.45.1±0.6119.3
    Ti410±3.1550±4.212.7±1.3122.0
    下载: 导出CSV

    表  6  AZ91-Ti复合材料的杨氏模量和断裂韧性

    Table  6.   Young’s modulus and fracture toughness of AZ91-Ti composites

    仿生材料 E/GPa JIC/
    (kJ·m−2)
    JSS/
    (kJ·m−2)
    KQ/
    (MPa·m0.5)
    KSS/
    (MPa·m0.5)
    40%AZ91-Ti 55.9 14.3 25.8 28.3 37.9
    50%AZ91-Ti 54.9 23.9 41.1 36.2 47.5
    60%AZ91-Ti 54.3 19.5 36.6 32.5 44.6
    下载: 导出CSV
  • [1] BARTHELAT F, RABIEI R. Toughness amplification in natural composites[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4): 829-840. doi: 10.1016/j.jmps.2011.01.001
    [2] JOHNSON A P, SABU C, NIVITHA K P, et al. Bioinspired and biomimetic micro- and nanostructures in biomedicine[J]. Journal of Controlled Release, 2022, 343: 724-754. doi: 10.1016/j.jconrel.2022.02.013
    [3] SHARMA A S, YADAV S, BISWAS K, et al. High-entropy alloys and metallic nanocomposites: processing challenges, microstructure development and property enhancement[J]. Materials Science and Engineering: R: Reports, 2018, 131: 1-42. doi: 10.1016/j.mser.2018.04.003
    [4] SIDDIQUE S H, HAZELL P J, WANG H, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-A review[J]. Additive Manufacturing, 2022, 58: 103051. doi: 10.1016/j.addma.2022.103051
    [5] ZHANG J, LIU Z Q, WANG S G, et al. Hierarchically structured W-Cu composite with high strength by reactive melt infiltration[J]. Scripta Materialia, 2025, 259: 116544. doi: 10.1016/j.scriptamat.2025.116544
    [6] HAN T L, HOU C, ZHAO Z, et al. W-Cu composites with excellent comprehensive properties[J]. Composites Part B: Engineering, 2022, 233: 109664. doi: 10.1016/j.compositesb.2022.109664
    [7] NAZARI K, TRAN P, TAN P, et al. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: a review[J]. Open Ceramics, 2023, 15: 100399. doi: 10.1016/j.oceram.2023.100399
    [8] DOU C X, ZHANG M Y, REN D C, et al. Bi-continuous Mg-Ti interpenetrating-phase composite as a partially degradable and bioactive implant material[J]. Journal of Materials Science & Technology, 2022, 146: 211-220.
    [9] LI Z, MO H T, TIAN J H, et al. A novel Ti/Al interpenetrating phase composite with enhanced mechanical properties[J]. Materials Letters, 2023, 357: 135723.
    [10] VENKATESH R, HOSSAIN I, MOHANAVEL V, et al. Analysis and optimization of machining parameters of AZ91 alloy nanocomposite with the influences of nano ZrO2 through vacuum diecast process[J]. Heliyon, 2024, 10(15): e34931. doi: 10.1016/j.heliyon.2024.e34931
    [11] YAO F J, YOU G Q, WANG L, et al. Design, fabrication, microstructure, and mechanical properties of interlayer-free vacuum diffusion bonding Mg/Ti composites[J]. Vacuum, 2022, 199: 110947. doi: 10.1016/j.vacuum.2022.110947
    [12] YUAN M N, LI L, WANG Z J. Study of the microstructure modulation and phase formation of TiAl3Ti laminated composites[J]. Vacuum, 2018, 157: 481-486. doi: 10.1016/j.vacuum.2018.09.002
    [13] XIAO L, LIU T T, CHU Y, et al. Effect of Ti particles on the microstructure and mechanical properties of AZ91 magnesium matrix composites[J]. Acta Metallurgica Sinica (English Letters), 2023, 37(3): 513-524.
    [14] TANG B, LI J B, YE J L, et al. Strengthening mechanism and microstructure of deformable Ti particles reinforced AZ91 composite[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 1935-1945. doi: 10.1007/s40195-022-01428-0
    [15] GAO P F, HAN S L, ZHANG Y H, et al. Investigation on the interface bonding and reinforcement mechanism of nano Ti/AZ31 magnesium matrix composites[J]. Journal of Materials Research and Technology, 2024, 30: 4908-4919. doi: 10.1016/j.jmrt.2024.04.201
    [16] LUO H, LI J B, YE J L, et al. Enhancing the mechanical properties and thermal conductivity of Ti/AZ91 composites through integrated extrusion and rolling continuous deformation processing[J]. Journal of Alloys and Compounds, 2024, 1002: 175506. doi: 10.1016/j.jallcom.2024.175506
    [17] CHEN X, XU J, ZHENG K H, et al. Effect of Ti particles on microstructure and mechanical properties of Mg-9Al-1Zn based composite sheets[J]. Journal of Materials Research and Technology, 2023, 27: 1242-1257. doi: 10.1016/j.jmrt.2023.10.024
    [18] AN Y M, YANG Y, JIA Y N, et al. Mechanical properties of biomimetic ceramic with Bouligand architecture[J]. Journal of the American Ceramic Society, 2021, 105(4): 2385-2391.
    [19] ZHANG M Y, ZHAO N, YU Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures[J]. Nat Commun, 2022, 13, 3247.
    [20] SIVAKUMAR P M, YETISGIN A A, DEMIR E, et al. Polysaccharide-bioceramic composites for bone tissue engineering: a review[J]. International Journal of Biological Macromolecules, 2023, 250: 126237. doi: 10.1016/j.ijbiomac.2023.126237
    [21] NOGUEIRA L F B, MANIGLIA B C, BUCHET R, et al. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021, 110(4): 967-983.
    [22] SOLEYMANI S, NAGHIB S M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration[J]. Heliyon, 2023, 9(9): e19363. doi: 10.1016/j.heliyon.2023.e19363
    [23] BOSKEY A L. Mineralization, structure and function of bone[M]// MARKUS J S, SIMON P R, JOHN P B. Dynamics of bone and cartilage metabolism. Salt Lake City, Academic Press, 2006: 201-212.
    [24] ZHANG Y, TAN G Q, ZHANG M Y, et al. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales[J]. Journal of Materials Science & Technology, 2022, 96: 21-30.
    [25] ROMANOS G E, DELGADO-RUIZ R A, NICOLAS-SILVENTE A I. Volumetric changes in morse taper connections after implant placement in dense bone. in-vitro study[J]. Materials, 2020, 13(10): 2306. doi: 10.3390/ma13102306
    [26] SCHMIDT I, PAPASTAVROU A, STEINMANN P. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 24(11): 1274-1285.
    [27] FAN Z H, LIU H X, DING Z Z, et al. Simulation of cortical and cancellous bone to accelerate Tissue regeneration[J]. Advanced Functional Materials, 2023, 33(33): : 2301839.
    [28] HUFENBACH W, ULLRICH H J, GUDE M, et al. Manufacture studies and impact behaviour of light metal matrix composites reinforced by steel wires[J]. Archives of Civil and Mechanical Engineering, 2012, 12: 265. doi: 10.1016/j.acme.2012.06.005
    [29] LI Q Y, LI J, HE G. Compressive properties and damping capacities of magnesium reinforced with continuous steel wire[J]. Materials Science and Engineering: A, 2017, A680: 92.
    [30] WU S X, WANG S R, WEN D S, et al. Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement[J]. Applied Sciences, 2018, 8: 2012. doi: 10.3390/app8112012
    [31] ZOU C M, LIU Y, YANG X, et al. Effect of sintering neck on compressive mechanical properties of porous titanium[J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s485-s490. doi: 10.1016/S1003-6326(12)61750-6
    [32] JIANG S, HUANG L J, AN Q, et al. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81: 10-15. doi: 10.1016/j.jmbbm.2018.02.017
    [33] PU D M, WU S F, YANG H, et al. Effect of Ti particles on microstructure and mechanical properties of TiP/AZ91 composites[J]. Journal of Materials Research and Technology, 2023, 22: 1362-1374. doi: 10.1016/j.jmrt.2022.12.028
    [34] TAN Z, JIANG X Y, XI Z, et al. Fabrication of Zr-based bulk metallic glass lattice structure with high specific strength by laser powder bed fusion[J]. Additive Manufacturing, 2024, 95: 104556. doi: 10.1016/j.addma.2024.104556
    [35] ZHANG P, ZENG W D, ZHANG F, et al. Fracture toughness of Ti2AlNb alloy with different Al content: Intrinsic mechanism, extrinsic mechanism and prediction model[J]. Journal of Alloys and Compounds, 2023, 952: 170068. doi: 10.1016/j.jallcom.2023.170068
    [36] ASTM E1820-13. Standard test method for measurement of fracture toughness[S](ASTM International, 2013).
    [37] ASMUS S M F, SAKAKURA S, PEZZOTTI G. Hydroxyapatite toughened by silver inclusions[J]. Journal of Composite Materials, 2003, 37(23): 2117-2129. doi: 10.1177/002199803036242
    [38] OUYANG S, LIU Y, HUANG Q, et al. Effect of composition on in vitro degradability of Ti–Mg metal-metal composites[J]. Materials Science and Engineering: C, 2020, 107: 110327. doi: 10.1016/j.msec.2019.110327
    [39] ZHAO G L, XIN L J, LI L, et al. Cutting force model and damage formation mechanism in milling of 70wt% Si/Al composite[J]. Chinese Journal of Aeronautics, 2022, 36(7): 114-128.
    [40] PEI Y B, HUANG T, CHEN F, et al. In-situ observation of crack evolution in Ti/Al laminated composite[J]. Composite Interfaces, 2019, 27(5): 435-448.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  39
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-23
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回