中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提钒转炉污泥中镓和铁选择性分离研究

姜洋 秦治峰 王奎 杨珍 刘娟

姜洋, 秦治峰, 王奎, 杨珍, 刘娟. 提钒转炉污泥中镓和铁选择性分离研究[J]. 钢铁钒钛, 2025, 46(4): 88-94, 165. doi: 10.7513/j.issn.1004-7638.2025.04.012
引用本文: 姜洋, 秦治峰, 王奎, 杨珍, 刘娟. 提钒转炉污泥中镓和铁选择性分离研究[J]. 钢铁钒钛, 2025, 46(4): 88-94, 165. doi: 10.7513/j.issn.1004-7638.2025.04.012
JIANG Yang, QIN Zhifeng, WANG Kui, YANG Zhen, LIU Juan. Study on the selective separation of gallium and iron from vanadium converter sludge[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 88-94, 165. doi: 10.7513/j.issn.1004-7638.2025.04.012
Citation: JIANG Yang, QIN Zhifeng, WANG Kui, YANG Zhen, LIU Juan. Study on the selective separation of gallium and iron from vanadium converter sludge[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 88-94, 165. doi: 10.7513/j.issn.1004-7638.2025.04.012

提钒转炉污泥中镓和铁选择性分离研究

doi: 10.7513/j.issn.1004-7638.2025.04.012
详细信息
    作者简介:

    姜洋,1989年出生,女,辽宁大连人,博士,高级工程师,研究方向为固废资源化利用,E-mail:jiangyang731@hotmail.com

    通讯作者:

    秦治峰,1995年出生,男,河南焦作人,博士,工程师,研究方向为固废资源化利用,E-mail:qzfscu@126.com

  • 中图分类号: X757

Study on the selective separation of gallium and iron from vanadium converter sludge

  • 摘要: 采用酸浸法对冶炼流程中的提钒转炉污泥进行了镓的浸出试验,考察了镓在提钒转炉污泥中的赋存状态及多种因素对镓浸出率的影响,包括酸浓度、液固比、反应温度、反应时间和搅拌速率等。结果表明,镓离子主要赋存在氧化铁的晶格中,盐酸可作为有效浸出试剂破坏氧化铁的晶格,在盐酸浓度为5 mol/L,反应时间1 h,反应温度60 °C,液固比为5:1时镓的浸出率为90%。利用元素沉淀pH值的差异可有效分离镓和铁,进而得到富镓料,与提钒转炉污泥对比,富镓料中的镓富集24倍。该研究成果有望为实现钒钛磁铁矿中高附加值关键金属的提取提供技术支撑。
  • 图  1  提钒转炉污泥的外观形貌(黑色细粉)

    Figure  1.  Appearance of vanadium extraction converter sludge (black fine powder)

    图  2  提钒转炉污泥Fe、Ga分离工艺设计

    Figure  2.  Process of Fe and Ga separation from vanadium extraction converter sludge

    图  3  提钒转炉污泥XRD分析结果

    Figure  3.  XRD pattern of vanadium extraction converter sludge

    图  4  提钒转炉污泥SEM 背闪射图像和主要元素能谱分布图

    Figure  4.  Backscattered SEM image of vanadium extraction converter sludge and EDS mapping of the distribution of the main elements

    图  5  盐酸浓度对提钒转炉污泥中镓和铁浸出率的影响

    Figure  5.  Effect of HCl concentration on the Ga and Fe leaching efficiency from vanadium extraction converter sludge

    图  6  液固比对提钒转炉污泥中镓和铁浸出率的影响

    Figure  6.  Effect of liquid/solid ratio on the Ga and Fe leaching efficiency from vanadium extraction converter sludge

    图  7  浸出温度对提钒转炉污泥中镓和铁浸出率的影响

    Figure  7.  Effect of temperature on the Ga and Fe leaching efficiency from vanadium extraction converter sludge

    图  8  搅拌时间对提钒转炉污泥中镓和铁浸出率的影响

    Figure  8.  Effect of agitating time on the Ga and Fe leaching efficiency from vanadium extraction converter sludge

    图  9  搅拌速率对提钒转炉污泥中镓和铁浸出率的影响

    Figure  9.  Effect of agitating rate on the Ga and Fe leaching efficiency from vanadium extraction converter sludge

    图  10  镓和铁元素在 pH值为0~14范围内存在形式

    (a)Fe3+水解分布;(b) Ga3+水解分布;(c) Fe2+水解分布

    Figure  10.  Existing states of gallium and iron in the pH range of 0~14

    图  11  不同pH条件下镓和铁的沉淀率

    Figure  11.  Ga and Fe recoveries at different pH during precipitation

    图  12  富镓料XRD分析结果

    Figure  12.  XRD pattern of Ga-rich material

    表  1  提钒转炉污泥成分分析结果

    Table  1.   Result of XRF analysis of vanadium extraction converter sludge %

    AlCrCaFeMgMnNiPPbSiTiVZnGa*O
    0.20.10.264.20.10.30.30.10.50.60.10.13.00.03Bal.
    注:*该元素含量为ICP检测结果。
    下载: 导出CSV

    表  2  提钒转炉污泥电子探针物相定量结果

    Table  2.   EPMA result of vanadium extraction converter sludge %

    物相SiO2Fe3O4ZnOGa
    含硅物相98.51.30.017 4
    含铁物相0.796.21.30.057 8
    下载: 导出CSV

    表  3  富镓料成分分析结果

    Table  3.   XRF analysis result of Ga-rich material %

    AlCrCaFeMnNiPPbSiTiVZnGaO
    0.730.820.0451.250.060.031.372.260.070.912.222.030.73Bal.
    下载: 导出CSV
  • [1] KURTULDU F, MUTLU N, BOCCACCINI A R, et al. Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties[J]. Bioactive Materials, 2022, 17: 125-146. doi: 10.1016/j.bioactmat.2021.12.034
    [2] KAUR D, GHOSH A, KUMAR M. A strategic review on gallium oxide based power electronics: Recent progress and future prospects[J]. Materials Today Communications, 2022, 33: 104244. doi: 10.1016/j.mtcomm.2022.104244
    [3] ZHAO Z, YANG Y X, et al. Recovery of gallium from Bayer liquor: A review [J]. Hydrometallurgy, 2012.
    [4] LU F, XIAO T, LIN J, et al. Resources and extraction of gallium: A review[J]. Hydrometallurgy, 2017, 174.
    [5] QIN Z F, WANG S H, ZHANG S H, et al. Cross-linked amidoxime porous resin for selective gallium separation in Bayer solutions: Reaction mechanism and kinetic study[J]. Chemical Engineering Journal, 2024, 481: 14830.
    [6] Zhongshang Industry Research Institute. Analysis of the upstream, midstream and downstream markets of China's gallium industry chain in 2023 [EB/OL]. https://www.seccw.com/Document/detail/id/22188.html. (中商产业研究院. 2023年中国镓产业链上中下游市场分析[EB/OL]. https://www.seccw.com/Document/detail/id/22188.html .

    Zhongshang Industry Research Institute. Analysis of the upstream, midstream and downstream markets of China's gallium industry chain in 2023 [EB/OL]. https://www.seccw.com/Document/detail/id/22188.html.
    [7] SONG X Y, SHE Y W, LUAN Y, et al. Resources of Co, Ga and Sc of V-Ti magnetite deposits in the Panxi area within the Emeishan Large Igneous Provence and their integrated utilization potentials[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(1): 218-231. (宋谢炎, 佘宇伟, 栾燕, 等. 峨眉大火成岩省攀西钒钛磁铁矿矿集区钴、镓、钪资源及综合利用潜力[J]. 矿物岩石地球化学通报, 2024, 43(1): 218-231.

    SONG X Y, SHE Y W, LUAN Y, et al. Resources of Co, Ga and Sc of V-Ti magnetite deposits in the Panxi area within the Emeishan Large Igneous Provence and their integrated utilization potentials[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(1): 218-231.
    [8] GAO L, SHI Z, YIN S B, et. al. Comparative study on the recovery of gallium from V-recovering tail slag[J]. Mining & Metallurgy, 2014, 23(3): 73-76. (高磊, 施哲, 阴树标, 等. 提钒尾渣镓回收方法研究[J]. 矿冶, 2014, 23(3): 73-76.

    GAO L, SHI Z, YIN S B, et. al. Comparative study on the recovery of gallium from V-recovering tail slag[J]. Mining & Metallurgy, 2014, 23(3): 73-76.
    [9] WANG N, SHI L, CHEN J, et al. Research on the occurrence state of gallium in fly ash and its comprehensive recovery and utilization[J]. Acta Mineralogica Sinica, 2007, 27(z1): 396-397. (王宁, 石莉, 陈娟, 等. 粉煤灰中镓的赋存状态及综合回收利用研究[J]. 矿物学报, 2007, 27(z1): 396-397.

    WANG N, SHI L, CHEN J, et al. Research on the occurrence state of gallium in fly ash and its comprehensive recovery and utilization[J]. Acta Mineralogica Sinica, 2007, 27(z1): 396-397.
    [10] LIU J Y. Research Progress of gallium in Panzhihua vanadium titano-magnetite ore[J]. Modern Mining, 2019(1): 102-105. (刘佳媛. 攀枝花钒钛磁铁矿中镓的研究进展[J]. 现代矿业, 2019(1): 102-105.

    LIU J Y. Research Progress of gallium in Panzhihua vanadium titano-magnetite ore[J]. Modern Mining, 2019(1): 102-105.
    [11] WEI J. Separation, Enrichment and determination of gallium in the tailings of Panzhihua vanadium-titanium magnetite [D]. Sichuan: Chengdu University of Technology, 2018. (魏娟. 攀枝花钒钛磁铁矿尾矿中镓的分离富集与测定[D]. 四川: 成都理工大学, 2018.

    WEI J. Separation, Enrichment and determination of gallium in the tailings of Panzhihua vanadium-titanium magnetite [D]. Sichuan: Chengdu University of Technology, 2018.
    [12] GUO H J, LIN J. Extraction of gallium from vanadium leaching residue by chlorination roasting[J]. Iron Steel Vanadium Titanium, 1993, 14(4): 58-66. (郭汉杰, 林洁. 氯化焙烧提取浸钒渣中的镓[J]. 钢铁钒钛, 1993, 14(4): 58-66.

    GUO H J, LIN J. Extraction of gallium from vanadium leaching residue by chlorination roasting[J]. Iron Steel Vanadium Titanium, 1993, 14(4): 58-66.
    [13] LI H, LI J J, WANG W J, et al. Experimental study on the leaching of gallium from vanadium leaching residue containing gallium[J]. Iron Steel Vanadium Titanium, 1993(4): 82-87. (李宏, 李景捷, 王万军, 等. 从含镓浸钒渣中浸出镓的试验研究[J]. 钢铁钒钛, 1993(4): 82-87.

    LI H, LI J J, WANG W J, et al. Experimental study on the leaching of gallium from vanadium leaching residue containing gallium[J]. Iron Steel Vanadium Titanium, 1993(4): 82-87.
    [14] GUO H J, ZHOU R Z, LIN Z C, et al. Extracting gallium from vanadium leaching residue by smelting reduction-the smelting reduction process under carbon-unsaturated conditions[J]. Iron Steel Vanadium Titanium, 1993(4): 67-74. (郭汉杰, 周荣章, 林宗彩, 等. 用熔融还原的方法从浸钒渣中提镓-碳不饱和情况下的熔融还原过程[J]. 钢铁钒钛, 1993(4): 67-74.

    GUO H J, ZHOU R Z, LIN Z C, et al. Extracting gallium from vanadium leaching residue by smelting reduction-the smelting reduction process under carbon-unsaturated conditions[J]. Iron Steel Vanadium Titanium, 1993(4): 67-74.
    [15] CHEN S F. Research on the extraction of metallic gallium from the discarded vanadium pentoxide slag of Panzhihua iron and steel group[J]. Iron Steel Vanadium Titanium, 1994(1): 49-52. (陈世芳. 攀钢V2O5弃渣中金属镓的提取研究[J]. 钢铁钒钛, 1994(1): 49-52.

    CHEN S F. Research on the extraction of metallic gallium from the discarded vanadium pentoxide slag of Panzhihua iron and steel group[J]. Iron Steel Vanadium Titanium, 1994(1): 49-52.
    [16] HOU J, WU E H, LI J. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017(6): 103-108.

    HOU J, WU E H, LI J. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  35
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-13
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回