中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛尾矿改性及尾矿基胶凝材料制备研究

李翠 陈涛 张俊 罗少琛 张肖 胡丽丽

李翠, 陈涛, 张俊, 罗少琛, 张肖, 胡丽丽. 钒钛尾矿改性及尾矿基胶凝材料制备研究[J]. 钢铁钒钛, 2025, 46(4): 95-102. doi: 10.7513/j.issn.1004-7638.2025.04.013
引用本文: 李翠, 陈涛, 张俊, 罗少琛, 张肖, 胡丽丽. 钒钛尾矿改性及尾矿基胶凝材料制备研究[J]. 钢铁钒钛, 2025, 46(4): 95-102. doi: 10.7513/j.issn.1004-7638.2025.04.013
LI Cui, CHEN Tao, ZHANG Jun, LUO Shaochen, ZHANG Xiao, HU Lili. Study on modification of vanadium-titanium tailings and preparation of tailings-based cementing materials[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 95-102. doi: 10.7513/j.issn.1004-7638.2025.04.013
Citation: LI Cui, CHEN Tao, ZHANG Jun, LUO Shaochen, ZHANG Xiao, HU Lili. Study on modification of vanadium-titanium tailings and preparation of tailings-based cementing materials[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 95-102. doi: 10.7513/j.issn.1004-7638.2025.04.013

钒钛尾矿改性及尾矿基胶凝材料制备研究

doi: 10.7513/j.issn.1004-7638.2025.04.013
详细信息
    作者简介:

    李翠,1995年出生,四川米易人,硕士研究生,采矿工程师,主要从事采矿工艺及充填材料等设计研究工作,E-mail:1369467558@qq.com

  • 中图分类号: TD926.4; X753

Study on modification of vanadium-titanium tailings and preparation of tailings-based cementing materials

  • 摘要: 以攀西地区钒钛尾矿为原材料,通过物理和复合化学改性技术激发其潜在的胶凝活性,进而制备钒钛尾矿基胶凝材料。通过对所制备材料的微观性能进行分析,探讨胶凝材料体系的水化产物、微观结构的演变过程。结果表明,经机械力活化与化学复合改性处理后,钒钛尾矿养护28 d活性指数显著提升,由原始的60%提升至84%。当条件为钒钛尾矿45%、提钛渣20%、钙质材料5%、硫质材料15%和水泥熟料15%时,所制备的钒钛尾矿基胶凝材料展现出良好的力学性能,养护28 d抗压强度达到33.1 MPa,与32.5级水泥相当,表明该材料在非结构工程领域具有潜在的应用前景。
  • 图  1  钒钛尾矿的微观形貌

    Figure  1.  Microscopic morphology of vanadium-titanium tailings

    图  2  原状钒钛尾矿的物相组成

    Figure  2.  Phase composition of initial vanadium-titanium tailings

    图  3  粉磨6 min钒钛尾矿的XRD图

    Figure  3.  Phase composition of the ground vanadium-titanium tailings for 6 min

    图  4  粉磨钒钛尾矿试样的密度与粒径中值的关系

    Figure  4.  Relationship diagram between the density and median particle size of the ground vanadium-titanium tailings samples

    图  5  钒钛尾矿比表面积随粉磨时间的变化规律

    Figure  5.  Variation law of the the specific surface area of vanadium-titanium tailings with the grinding time

    图  6  试样的物相组成

    (a) 7 d; (b) 28 d

    Figure  6.  Phase composition spectrum of the samples

    图  7  试样的 TG-DTG 曲线

    (a) 养护 7 d的TG; (b) 养护7 d的DTG ; (c) 养护 28 d的TG; (d) 养护 28 d的DTG

    Figure  7.  Derivative thermo-gravimetric curves of the samples

    图  8  试样在不同温度区间的水化产物质量损失的相对含量

    Figure  8.  Relative content of mass loss of hydration products in different temperature ranges

    图  9  试样养护7、28 d的微观形貌

    (a) T0-7 d; (b) T1-7 d; (c) T2-7 d; (d) T3-7 d; (e) T0-28 d; (f) T1-28 d; (g) T2-28 d; (h) T3-28 d

    Figure  9.  Microscopic morphology of the samples after 7 days and 28 days of curing

    表  1  钒钛尾矿的主要物理性能

    Table  1.   Main physical properties of vanadium-titanium tailings

    密度/
    (g·cm−3)
    比表面积/
    (m2·kg−1)
    45 μm筛
    余量/%
    80 μm筛
    余量/%
    需水量
    比/%
    活性指数/%
    3 d 7 d 28 d
    3.09 160 80.4 64.4 92 53 55 55
    下载: 导出CSV

    表  2  钒钛尾矿的主要化学成分

    Table  2.   Main chemical components of vanadium-titanium tailings %

    SiO2 Al2O3 MgO CaO Fe2O3 K2O TiO2
    34.6 12.9 10.4 12.7 19.1 0.2 6.6
    下载: 导出CSV

    表  3  粉磨后钒钛尾矿的火山灰活性技术指标

    Table  3.   Pozzolanic activity technical indicators of the ground vanadium-titanium tailings

    粉磨时间/min比表面积/(m2·kg−1)需水量比/%活性指数/%
    3 d7 d28 d
    0(原状)16092535555
    261896596060
    1273098606969
    下载: 导出CSV

    表  4  钒钛尾矿改性方案及活性指数测试结果

    Table  4.   Modification scheme and activity index test results of vanadium-titanium tailings

    名称 粉磨时间/min 比表面积/(m2·kg−1) 尾矿掺量/% 提钛渣掺量/% 硫质材料掺量/% 钙质材料掺量/% 水泥熟料/% 活性指数/%
    3 d 7 d 28 d
    MC1 2 618 30.0 70.0 59 60 60
    MC2 12 730 30.0 70.0 60 69 69
    CC1 2 618 25.5 4.5 70.0 53 56 73
    CC2 12 730 13.5 8.25 4.5 3.75 70.0 81 87 84
    下载: 导出CSV

    表  5  钒钛尾矿基胶凝材料配比方案及强度结果

    Table  5.   Ratio scheme and strength results of vanadium-titanium tailings-based cementing materials

    试样
    编号
    粉磨时间/min钒钛尾矿尾矿掺量/%提钛渣
    掺量/%
    钙质材料
    掺量/%
    硫质材料
    掺量/%
    水泥熟料
    掺量/%
    抗压强度/MPa
    D50/μm3 d7 d28 d
    T001894520515159.711.818.7
    T1314.245205151511.513.219.6
    T2810.945205151513.614.920.8
    T3129.745205151515.019.133.1
    下载: 导出CSV
  • [1] GUO L J, LIU G S, MA Q H, et al. Research progress on the application of filling mining technology in metal mines[J]. Journal of China Coal Society, 2022, 47(12): 4182-4200. (郭利杰, 刘光生, 马青海, 等. 金属矿山充填采矿技术应用研究进展[J]. 煤炭学报, 2022, 47(12): 4182-4200.

    GUO L J, LIU G S, MA Q H, et al. Research progress on the application of filling mining technology in metal mines[J]. Journal of China Coal Society, 2022, 47(12): 4182-4200.
    [2] CHEN Y N, LIANG L M. Development and research on low-cost cementitious filling materials[J]. Nonferrous Metals: Mining Section, 2004(5): 12-13,16. (陈云嫩, 梁礼明. 低成本充填胶凝材料的开发研究[J]. 有色金属: 矿山部分, 2004(5): 12-13,16.

    CHEN Y N, LIANG L M. Development and research on low-cost cementitious filling materials[J]. Nonferrous Metals: Mining Section, 2004(5): 12-13,16.
    [3] ZHANG X T. Experimental study on expansive filling materials[D]. Shenyang: Northeastern University, 2014. (张雄天. 膨胀充填材料的试验研究[D]. 沈阳: 东北大学, 2014.

    ZHANG X T. Experimental study on expansive filling materials[D]. Shenyang: Northeastern University, 2014.
    [4] WEI Z A, YIN G Z, LI G Z, et al. Reinforced terraced fields method for fine tailings disposal[J]. Minerals Engineering, 2009, 22(12): 1053-1059. doi: 10.1016/j.mineng.2009.03.014
    [5] Ministry of Emergency Management. Interpretation of the "Work plan for preventing and defusing the safety risks of tailings ponds" [EB/OL]. Beijing: Ministry of Emergency Management, (2021-03-02) [2022-07-05]. (应急管理部. 《防范化解尾矿库安全风险工作方案》解读[EB/OL]. 北京: 应急管理部, (2021-03-02)[2022-07-05].

    Ministry of Emergency Management. Interpretation of the "Work plan for preventing and defusing the safety risks of tailings ponds" [EB/OL]. Beijing: Ministry of Emergency Management, (2021-03-02) [2022-07-05].
    [6] ZUCCHERATTE A C V, FREIRE C B, LAMEIRAS F S. Synthetic gravel for concrete obtained from sandy iron oretailing and recycled polyethyltherephtalate[J]. Construction and Building Materials, 2017, 151: 859-865. doi: 10.1016/j.conbuildmat.2017.06.133
    [7] QIN Y. Influence of iron tailings sand on the mechanical properties and microstructure of foam concrete[J]. China Measurement & Test, 2022, 48(6): 134-142. (秦毅. 铁尾矿砂对泡沫混凝土力学性质和微观结构的影响[J]. 中国测试, 2022, 48(6): 134-142.

    QIN Y. Influence of iron tailings sand on the mechanical properties and microstructure of foam concrete[J]. China Measurement & Test, 2022, 48(6): 134-142.
    [8] WANG S C. Experimental study on the development of a new type of cementitious material based on phosphogypsum-slag in Jinchuan No. 2 mine[D]. Baotou: Inner Mongolia University of Science and Technology, 2015. (王世昌. 金川二矿磷石膏—矿渣基新型胶凝材料开发试验研究[D]. 包头: 内蒙古科技大学, 2015.

    WANG S C. Experimental study on the development of a new type of cementitious material based on phosphogypsum-slag in Jinchuan No. 2 mine[D]. Baotou: Inner Mongolia University of Science and Technology, 2015.
    [9] ZHANG L, LÜ G Z. Application and prospect of filling materials in filling mining methods of metal mines[J]. Modern Mining, 2010(1): 20-22. (张璐, 吕广忠. 金属矿山充填采矿法中充填材料的应用及展望[J]. 现代矿业, 2010(1): 20-22. doi: 10.3969/j.issn.1674-6082.2010.01.005

    ZHANG L, LÜ G Z. Application and prospect of filling materials in filling mining methods of metal mines[J]. Modern Mining, 2010(1): 20-22. doi: 10.3969/j.issn.1674-6082.2010.01.005
    [10] HOU Y F. Effect of iron tailing sand and natural sand on concrete properties[J]. Key Engineering Materials, 2014, 3019: 599.
    [11] LIU B, MENG H N, PAN G H, et al. Relationship between the fineness and specific surface area of iron tailing powder and its effect on compressive strength and drying shrinkage of cement composites[J]. Construction and Building Materials, 2022, 357.
    [12] LATIF S A, RAHMAN M S A, SIKIRU O. Sorptivity of concrete containing iron ore tailings[J]. Romanian Journal of Materials, 2017, 47(3): 336-344.
    [13] TAO Y P, LAI T M. Research on the mechanical and durability properties of recycled concrete with iron tailings sand[J]. Journal of Functional Materials, 2023, 54(3): 3143-3148. (陶亚平, 赖天文. 铁尾矿砂再生混凝土的力学及耐久性能研究[J]. 功能材料, 2023, 54(3): 3143-3148. doi: 10.3969/j.issn.1001-9731.2023.03.020

    TAO Y P, LAI T M. Research on the mechanical and durability properties of recycled concrete with iron tailings sand[J]. Journal of Functional Materials, 2023, 54(3): 3143-3148. doi: 10.3969/j.issn.1001-9731.2023.03.020
    [14] ZHU Q, YUAN Y X, CHEN J H. Research on the high-temperature resistance of recycled aggregate concrete withiron tailing sand[J]. Construction and Building Materials, 2022, 327: 126889. doi: 10.1016/j.conbuildmat.2022.126889
    [15] TAN M Y, LÜ X J, JIANG M F. Research status of mine tailings used as cement admixture[J]. Concrete, 2015, (9): 84-86. (谭明洋, 吕宪俊, 姜梅芬. 尾矿作水泥混合材的研究现状[J]. 混凝土, 2015, (9): 84-86.

    TAN M Y, LÜ X J, JIANG M F. Research status of mine tailings used as cement admixture[J]. Concrete, 2015, (9): 84-86.
    [16] LI J C, WU T Y. Relationship between the microstructure of tungsten carbide powder and process parameters[J]. Journal of Central South University (Science and Technology), 1986(4): 54-61,115. (李健纯, 吴惕言. 碳化钨粉末的微观结构与工艺参数的关系[J]. 中南大学学报(自然科学版), 1986(4): 54-61,115.

    LI J C, WU T Y. Relationship between the microstructure of tungsten carbide powder and process parameters[J]. Journal of Central South University (Science and Technology), 1986(4): 54-61,115.
    [17] WANG B H, WANG H D. Feasibility study on the manufacture of ultrafine powder by mechanical crushing method[J]. Journal of Wuhan University of Technology, 1996, 18(4): 127-128. (王炳华, 王怀德. 机械粉碎法制造超微粉的可行性探讨[J]. 武汉工业大学学报, 1996, 18(4): 127-128.

    WANG B H, WANG H D. Feasibility study on the manufacture of ultrafine powder by mechanical crushing method[J]. Journal of Wuhan University of Technology, 1996, 18(4): 127-128.
    [18] XIAO L N, ZHU J L. Study on the hydration characteristics of copper tailings powder-based composite cementitious materials[J]. Non-Metallic Mines, 2020, 43(2): 61-63. (肖莉娜, 朱街禄. 铜尾矿粉基复合胶凝材料水化特性研究[J]. 非金属矿, 2020, 43(2): 61-63. doi: 10.3969/j.issn.1000-8098.2020.02.016

    XIAO L N, ZHU J L. Study on the hydration characteristics of copper tailings powder-based composite cementitious materials[J]. Non-Metallic Mines, 2020, 43(2): 61-63. doi: 10.3969/j.issn.1000-8098.2020.02.016
    [19] WANG S X. Research on the preparation and properties of iron tailings composite cementitious materials[D]. Handan: Hebei University of Engineering, 2024. (王绍熙. 铁尾矿复合胶凝材料的制备及性能研究[D]. 邯郸: 河北工程大学, 2024.

    WANG S X. Research on the preparation and properties of iron tailings composite cementitious materials[D]. Handan: Hebei University of Engineering, 2024.
    [20] CHEN J L. Research on the preparation of composite cementitious materials from steel solid wastes and their application in concrete[D]. Handan: Hebei University of Engineering, 2024. (陈敬亮, 土木工程. 钢铁固废制备复合胶凝材料及其混凝土的研究[D]. 邯郸: 河北工程大学, 2024.

    CHEN J L. Research on the preparation of composite cementitious materials from steel solid wastes and their application in concrete[D]. Handan: Hebei University of Engineering, 2024.
    [21] WANG C L, MA J T, YANG F H, et al. Preparation and properties of vanadium-titanium iron tailings compositecementitious materials[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 98-105. (王长龙, 马锦涛, 杨丰豪, 等. 钒钛铁尾矿复合胶凝材料的制备及性能[J]. 钢铁钒钛, 2023, 44(1): 98-105. doi: 10.7513/j.issn.1004-7638.2023.01.017

    WANG C L, MA J T, YANG F H, et al. Preparation and properties of vanadium-titanium iron tailings compositecementitious materials[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 98-105. doi: 10.7513/j.issn.1004-7638.2023.01.017
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  38
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-23
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回