中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双碳目标下CO2化学转化技术的研究进展

李函霏 刘芳 安宁 孙中琦 陈鹏 王飞

李函霏, 刘芳, 安宁, 孙中琦, 陈鹏, 王飞. 双碳目标下CO2化学转化技术的研究进展[J]. 钢铁钒钛, 2025, 46(4): 103-110. doi: 10.7513/j.issn.1004-7638.2025.04.014
引用本文: 李函霏, 刘芳, 安宁, 孙中琦, 陈鹏, 王飞. 双碳目标下CO2化学转化技术的研究进展[J]. 钢铁钒钛, 2025, 46(4): 103-110. doi: 10.7513/j.issn.1004-7638.2025.04.014
LI Hanfei, LIU Fang, AN Ning, SUN Zhongqi, CHEN Peng, WANG Fei. Research progress of CO2 chemical conversion technology under the dual-carbon target[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 103-110. doi: 10.7513/j.issn.1004-7638.2025.04.014
Citation: LI Hanfei, LIU Fang, AN Ning, SUN Zhongqi, CHEN Peng, WANG Fei. Research progress of CO2 chemical conversion technology under the dual-carbon target[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 103-110. doi: 10.7513/j.issn.1004-7638.2025.04.014

双碳目标下CO2化学转化技术的研究进展

doi: 10.7513/j.issn.1004-7638.2025.04.014
详细信息
    作者简介:

    李函霏,1993年出生,女,辽宁鞍山人,硕士研究生,工程师,研究方向:CO2资源化利用,E-mail:ag_lihanfei@163.com

  • 中图分类号: X701

Research progress of CO2 chemical conversion technology under the dual-carbon target

  • 摘要: 为了应对全球气候变化的严峻挑战,我国明确提出碳中和的战略目标。发展CO2利用技术是实现双碳目标的关键。通过CO2利用技术将CO2转化为有价值的产品和资源,不仅可以实现CO2排放的减量化,还可以带来经济效益。基于双碳目标的战略需求与CO2利用技术的发展趋势及重要性,重点综述了我国CO2化学转化技术的研究进展,系统分析了光催化、电催化、热催化还原三大技术路线的研究现状,探讨了这些技术面临的挑战和潜在的解决方案。最后,对我国CO2化学转化技术的未来发展提出了建议。
  • 图  1  光催化还原CO2基本原理[11]

    Figure  1.  Basic principle diagram of photocatalytic reduction of CO2[11]

    图  2  CRR反应可能的活化模式和中间体[17]

    Figure  2.  Possible activation mode and intermediates of CRR reaction[17]

    图  3  CO2在Cu-Ag/TiO2催化剂上的光催化还原过程[18]

    Figure  3.  Photocatalytic reduction process of CO2 on Cu-Ag/TiO2 catalyst[18]

    图  4  量子点光催化还原CO2[20]

    (a)不同半导体量子点作为光催化剂的光催化CO2还原反应速率; (b)相同条件下不同CdS壳层厚度修饰的CdSe量子点的光催化CO2还原速率; (c) 催化剂的循环利用; (d) 量子点光催化AM1.5G光源下CO2还原产物随时间的变化; (e) 13C气氛中不同光照时间的光催化气体产物GC-MS谱图; (f) 450 nmLED照射下13CO增长与13CO2衰减动力学曲线

    Figure  4.  Photocatalytic reduction of CO2 by quantum dots[20]

    图  5  CO2还原的电极材料和反应产物示意[24]

    Figure  5.  Schematic diagram of electrode materials and reaction products reduced by CO2[24]

    图  6  电催化还原CO2生成不同产物法拉第效率[24]

    Figure  6.  Faraday efficiency of electrocatalytic reduction of CO2 to generate different products[24]

    图  7  CO2加氢合成碳氢化合物的技术路线[29]

    Figure  7.  Technical route of CO2 hydrogenation to synthesize hydrocarbons[29]

    图  8  Fe(Zn,Cu,Mn)-Na催化剂的CO2加氢反应性能[36]

    Figure  8.  CO2 hydrogenation reaction performance of Fe(Zn,Cu,Mn)-Na catalyst[36]

    图  9  负载型催化剂和本体催化剂在反应前后的稳定性[37]

    Figure  9.  Stability of loaded catalyst and ontological catalyst before and after the reaction[37]

  • [1] IEA. IEA (2024), CO2 Emissions in 2023[Z/OL]. https://www.iea.org/reports/co2-emissions-in-2023.
    [2] ZHOU Z X, GAO P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. doi: 10.1016/S1872-2067(22)64107-X
    [3] LI C X, ZHANG Y, ZHANG K X, et al. Research on resource utilization of CO2 in steel industry[J]. Materials Reports, 2023, 37(S2): 468-473. (李晨晓, 张昀, 张凯璇, 等. 钢铁行业中CO2资源化利用的研究进展[J]. 材料导报, 2023, 37(S2): 468-473.

    LI C X, ZHANG Y, ZHANG K X, et al. Research on resource utilization of CO2 in steel industry[J]. Materials Reports, 2023, 37(S2): 468-473.
    [4] ÁLVAREZ A, BANSODE A, URAKAWA A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical reviews, 2017, 117(14): 9804-9838. doi: 10.1021/acs.chemrev.6b00816
    [5] RODRIGUEZ J A, EVANS J, FERIA L, et al. CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane[J]. Journal of catalysis, 2013, 307: 162-169. doi: 10.1016/j.jcat.2013.07.023
    [6] WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The innovation, 2021, 2(4):100180.
    [7] LIU J Y, LI P S, JIA S Q, et al. Electrocatalytic CO2 hydrogenation to C2+ alcohols catalysed by Pr–Cu oxide heterointerfaces[J]. Nature Synthesis, 2025: 1-14.
    [8] ONO S, KANEGA R, KAWANAMI H. Direct formic acid production by CO2 hydrogenation with Ir complexes in HFIP under supercritical conditions[J]. Organometallics, 2024, 43(19): 2213-2220. doi: 10.1021/acs.organomet.4c00229
    [9] RONDA-LLORET M, ROTHENBERG G, SHIJU N R. A critical look at direct catalytic hydrogenation of carbon dioxide to olefins[J]. ChemSusChem, 2019, 12(17): 3896-3914. doi: 10.1002/cssc.201900915
    [10] ZHAO J B, BIAN F M. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. (赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535.

    ZHAO J B, BIAN F M. Progress on basis and application of CO2 chemical conversion technologies[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535.
    [11] NANDAL N, JAIN S L. A review on progress and perspective of molecular catalysis in photoelectrochemical reduction of CO2[J]. Coordination Chemistry Reviews, 2022, 451: 214271. doi: 10.1016/j.ccr.2021.214271
    [12] WU H, MENG F M. Research progress of modified nano-TiO2 composite materials in the field of photocatalysis[J]. Material Sciences, 2021, 11: 1003. (吴昊, 孟凡明. 改性纳米TiO2复合材料在光催化领域研究进展[J]. 材料科学, 2021, 11: 1003. doi: 10.12677/MS.2021.119116

    WU H, MENG F M. Research progress of modified nano-TiO2 composite materials in the field of photocatalysis[J]. Material Sciences, 2021, 11: 1003. doi: 10.12677/MS.2021.119116
    [13] ZHANG X, ZHANG Z Q, SUN Y D, et al. A review on WO3-based composite photocatalysts: synthesis, catalytic mechanism and diversified applications[J]. Rare Metals, 2024: 1-19.
    [14] QIAN Y, ZHANG F, PANG H. A review of MOFs and their composites-based photocatalysts: synthesis and applications[J]. Advanced Functional Materials, 2021, 31(37): 2104231. doi: 10.1002/adfm.202104231
    [15] ZHAO B B, ZHONG W, CHEN F, et al. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application[J]. Chinese Journal of Catalysis, 2023, 52(9): 127. (赵彬彬, 钟威, 陈峰, 等. 高晶化 g-C3N4 光催化剂: 合成, 结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127.

    ZHAO B B, ZHONG W, CHEN F, et al. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application[J]. Chinese Journal of Catalysis, 2023, 52(9): 127.
    [16] NING S, OU H, LI Y, et al. Co0- Coδ+ Interface double-site-mediated C−C coupling for the photothermal conversion of CO2 into light olefins[J]. Angewandte Chemie International Edition, 2023, 62(23): e202302253. doi: 10.1002/anie.202302253
    [17] DU C Y, SHENG J P, ZHONG F Y, et al. Rational design and mechanistic insights of advanced photocatalysts for CO2 to C2+ production: Status and challenges[J]. Chinese Journal of Catalysis, 2024, 60(5): 25. (杜晨宇, 盛剑平, 钟丰忆, 等. 光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战[J]. 催化学报, 2024, 60(5): 25.

    DU C Y, SHENG J P, ZHONG F Y, et al. Rational design and mechanistic insights of advanced photocatalysts for CO2 to C2+ production: Status and challenges[J]. Chinese Journal of Catalysis, 2024, 60(5): 25.
    [18] YU Y Y, HE Y, YAN P, et al. Boosted C–C coupling with Cu–Ag alloy sub-nanoclusters for CO2-to-C2H4 photosynthesis[J]. Proceedings of the National Academy of Sciences, 2023, 120(44): e2307320120. doi: 10.1073/pnas.2307320120
    [19] WU H L, LI X B, TUNG C H, et al. Semiconductor quantum dots: an emerging candidate for CO2 photoreduction[J]. Advanced Materials, 2019, 31(36): 1900709. doi: 10.1002/adma.201900709
    [20] GUO Q, LIANG F, LI X B, et al. Efficient and selective CO2 reduction integrated with organic synthesis by solar energy[J]. Chem, 2019, 5(10): 2605-2616. doi: 10.1016/j.chempr.2019.06.019
    [21] BAI Z M, LIU H H, CHEN K Y, et al. Recent progress on chemical conversion of carbon dioxide[J]. Shandong Chemical Industry, 2018, 47(11): 70-72, 76. (白振敏, 刘慧宏, 陈科宇, 等. 二氧化碳化学转化技术研究进展[J]. 山东化工, 2018, 47(11): 70-72, 76. doi: 10.3969/j.issn.1008-021X.2018.11.030

    BAI Z M, LIU H H, CHEN K Y, et al. Recent progress on chemical conversion of carbon dioxide[J]. Shandong Chemical Industry, 2018, 47(11): 70-72, 76. doi: 10.3969/j.issn.1008-021X.2018.11.030
    [22] KONG X Y, XIE L, WANG Y M, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. (孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198.

    KONG X Y, XIE L, WANG Y M, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198.
    [23] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. doi: 10.1039/C3CS60323G
    [24] ZHENG Y B, ZHANG Q, SHI J, et al. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1209-1223. (郑元波, 张前, 石坚, 等. 电催化还原CO2生成多种产物催化剂研究进展[J]. 化工进展, 2022, 41(3): 1209-1223.

    ZHENG Y B, ZHANG Q, SHI J, et al. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1209-1223.
    [25] SU W L, FAN Y. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394. (苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394.

    SU W L, FAN Y. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394.
    [26] CHEN H, LI Z H, ZHANG Z H, et al. Synthesis of composition-tunable syngas from efficiently electrochemical conversion of CO2 over AuCu/CNT bimetallic catalyst[J]. 2019, 58(34): 15425-15431.
    [27] YAN X, CHEN C, WU Y, et al. Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO[J]. Chemical science, 2021, 12(19): 6638-6645. doi: 10.1039/D1SC01117K
    [28] CHEN C J, YAN X P, LIU S J, et al. Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites[J]. Angewandte Chemie, 2020, 132(38): 16601-16606. doi: 10.1002/ange.202006847
    [29] GUO L S, SUN J, GE Q J, et al. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons[J]. Journal of Materials Chemistry A, 2018, 6(46): 23244-23262. doi: 10.1039/C8TA05377D
    [30] JIA J Y, SHAN Y L, TUO Y X, et al. Review of iron-based catalysts for carbon dioxide fischer–tropsch synthesis[J]. transactions of Tianjin University, 2024: 1-20.
    [31] LI J, HE Y L, TAN L, et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology[J]. Nature Catalysis, 2018, 1(10): 787-793. doi: 10.1038/s41929-018-0144-z
    [32] ZHENG Y H, XU C H, ZHANG X, et al. Synergistic effect of Alkali Na and K promoter on Fe-Co-Cu-Al catalysts for CO2 hydrogenation to light hydrocarbons[J]. Catalysts, 2021, 11(6): 735. doi: 10.3390/catal11060735
    [33] YANG S, CHUN H J, LEE S, et al. Comparative study of olefin production from CO and CO2 using Na-and K-promoted zinc ferrite[J]. ACS Catalysis, 2020, 10(18): 10742-10759. doi: 10.1021/acscatal.0c02429
    [34] NASRIDDINOV K, MIN J E, PARK H G, et al. Effect of Co, Cu, and Zn on FeAlK catalysts in CO2 hydrogenation to C5+ hydrocarbons[J]. Catalysis Science & Technology, 2022, 12(3): 906-915.
    [35] XU Y, ZHAI P, DENG Y C, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives[J]. Angewandte Chemie, 2020, 132(48): 21920-21928. doi: 10.1002/ange.202009620
    [36] YANG H Y, DANG Y R, CUI X, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 321: 122050. doi: 10.1016/j.apcatb.2022.122050
    [37] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS catalysis, 2013, 3(9): 2130-2149. doi: 10.1021/cs4003436
    [38] MA G Y, XU Y F, WANG J, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000. (马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000.

    MA G Y, XU Y F, WANG J, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000.
    [39] HE X, CHEN D R, WANG W N. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption[J]. Chemical Engineering Journal, 2020, 382: 122825. doi: 10.1016/j.cej.2019.122825
    [40] ZENG G T, QIU J, LI Z, et al. CO2 reduction to methanol on TiO2-passivated GaP photocatalysts[J]. ACS Catalysis, 2014, 4(10): 3512-3516. doi: 10.1021/cs500697w
    [41] CIMINO S, BOCCIA F, LISI L. Effect of alkali promoters (Li, Na, K) on the performance of Ru/Al2O3 catalysts for CO2 capture and hydrogenation to methane[J]. Journal of CO2 Utilization, 2020, 37: 195-203. doi: 10.1016/j.jcou.2019.12.010
    [42] WANG Z Q, XU Z N, PENG S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. doi: 10.1021/acscatal.5b00682
    [43] WANG S W, WU T J, LIN J, et al. Iron–potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. Acs Catalysis, 2020, 10(11): 6389-6401. doi: 10.1021/acscatal.0c00810
    [44] JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based fischer–tropsch synthesis catalysts[J]. ACS Catalysis, 2016, 6(1): 100-114. doi: 10.1021/acscatal.5b02205
    [45] WU T J, LIN J, CHENG Y, et al. Porous graphene-confined Fe–K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS applied materials & interfaces, 2018, 10(28): 23439-23443.
    [46] XU M J, ZHU M H, CHEN T Y, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576. (徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用: CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.

    XU M J, ZHU M H, CHEN T Y, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576.
    [47] SUN K H, ZHANG Z T, SHEN C Y, et al. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol[J]. Green Energy & Environment, 2022, 7(4): 807-817.
    [48] WU C Y, LIN L L, LIU J J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation[J]. Nature communications, 2020, 11(1): 5767. doi: 10.1038/s41467-020-19634-8
    [49] LI M M J, ZENG Z Y, LIAO F L, et al. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 343: 157-167. doi: 10.1016/j.jcat.2016.03.020
    [50] SUN X, LI H. Recent progress of Ga-based liquid metals in catalysis[J]. RSC advances, 2022, 12(38): 24946-24957. doi: 10.1039/D2RA04795K
  • 加载中
图(9)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  39
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回