中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

430不锈钢保护渣结晶型渣圈生长过程分析

王杏娟 宋元龙 朱立光 张建宇 司旭林 郑雪龙

王杏娟, 宋元龙, 朱立光, 张建宇, 司旭林, 郑雪龙. 430不锈钢保护渣结晶型渣圈生长过程分析[J]. 钢铁钒钛, 2025, 46(4): 127-134. doi: 10.7513/j.issn.1004-7638.2025.04.017
引用本文: 王杏娟, 宋元龙, 朱立光, 张建宇, 司旭林, 郑雪龙. 430不锈钢保护渣结晶型渣圈生长过程分析[J]. 钢铁钒钛, 2025, 46(4): 127-134. doi: 10.7513/j.issn.1004-7638.2025.04.017
WANG Xingjuan, SONG Yuanlong, ZHU Liguang, ZHANG Jianyu, SI Xulin, ZHENG Xuelong. Analysis of the growth process of crystallized slag rim in 430 stainless steel mold flux[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 127-134. doi: 10.7513/j.issn.1004-7638.2025.04.017
Citation: WANG Xingjuan, SONG Yuanlong, ZHU Liguang, ZHANG Jianyu, SI Xulin, ZHENG Xuelong. Analysis of the growth process of crystallized slag rim in 430 stainless steel mold flux[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 127-134. doi: 10.7513/j.issn.1004-7638.2025.04.017

430不锈钢保护渣结晶型渣圈生长过程分析

doi: 10.7513/j.issn.1004-7638.2025.04.017
基金项目: 国家自然科学基金项目(52374335,51974133);河北省自然科学基金重点项目(E2022208019)。
详细信息
    作者简介:

    王杏娟,1978年出生,女,河北邢台市人,博士,教授,主要从事连铸保护渣研究,E-mail:wxingjuan@ncst.edu.cn

    通讯作者:

    朱立光,1965年出生,男,河北丰南人,博士,教授,主要从事连铸及铸坯质量控制,E-mail:zhuliguang@ncst.edu.cn

  • 中图分类号: TF777,TF044.3

Analysis of the growth process of crystallized slag rim in 430 stainless steel mold flux

  • 摘要: 某钢厂430不锈钢采用进口保护渣常常形成过大的渣圈,影响铸坯的质量。为了明晰其渣圈长大原因,采用结晶器渣膜热流模拟仪,制取1450 ℃条件下430不锈钢保护渣结晶型渣圈,并利用扫描电镜分析其微观结构,以探究渣圈生长过程。同时,使用Factsage软件进行热力学模拟,并与XRD试验结果对比。结果发现:高熔点的硅酸二钙、硅灰石、黄长石和枪晶石优先析出冷凝在器壁上,形成初始结晶型渣圈,占35%;随后,较低熔点的菱硅钙钠石黏附在此层,占20%;最后,夹杂少量霞石的枪晶石逐渐附着在已形成的渣圈上,占45%。通过对这一过程的分析,揭示了430不锈钢保护渣结晶型渣圈的形成机制,为控制渣圈生长提供了理论依据。
  • 图  1  现场渣圈宏观形貌

    (a)渣圈总貌;(b)截取样1;(c)截取样2;(d)(c)渣圈的光薄片

    Figure  1.  Macroscopic morphology of on-site slag rim

    图  2  现场渣圈微观形貌

    (a)镶样后的现场渣圈;(b) A区放大;(c) B区放大;(d) C区放大

    Figure  2.  Microscopic morphology of on-site slag rim

    图  3  结晶器渣膜热流模拟仪升温过程

    Figure  3.  Heating process of the mold slag film thermal simulator

    图  4  制取的结晶型渣圈宏观形貌

    (a)结晶型渣圈总貌;(b)截取的部分结晶型渣圈

    Figure  4.  Macroscopic morphology of the synthesized crystallized slag rim

    图  5  结晶型渣圈横截面

    Figure  5.  Cross-section morphology of the crystalline slag rim

    图  6  结晶型渣圈区域1和2的微观结构

    (a)靠近器壁处形貌;(b)(c)区域1;(d)(e)区域2

    Figure  6.  Microstructures of crystallized slag rim regions 1 and 2

    图  7  图5中区域3微观结构

    (a)区域3;(b)区域A;(c)区域B元素能谱分析

    Figure  7.  Microstructure of region 3 in figure 5

    图  8  图5中区域4微观结构

    (a)区域4;(b)区域A;(b)区域B元素能谱分析

    Figure  8.  Microstructure of region 4 in figure 5

    图  9  图5中区域4不同位点微观结构

    (a)区域4;(b)区域A;(c)区域B

    Figure  9.  Microstructure at various locations in region 4 of figure 5

    图  10  图5中区域5微观结构

    (a)区域5;(b)区域A;(c)区域B元素能谱分析

    Figure  10.  Microstructure of region 5 in figure 5

    图  11  图5中区域6微观结构

    (a)区域6;(b)区域A;(c)区域B元素能谱分析

    Figure  11.  Microstructure of region 6 in figure 5

    图  12  结晶型渣圈生长过程

    Figure  12.  Growth process of crystalline slag rim

    图  13  1450 ℃结晶型渣圈XRD矿物分析

    Figure  13.  XRD mineral analysis of crystalline slag rim at 1450

    表  1  430不锈钢成分

    Table  1.   Composition of 430 stainless steel %

    C Si Mn P S Cr Ni N
    0.030~
    0.040
    0.250~
    0.350
    0.250~
    0.500
    ≤0.030 ≤0.005 16.00~
    17.00
    ≤0.400 0.030~
    0.050
    下载: 导出CSV

    表  2  430不锈钢保护渣成分

    Table  2.   Composition table of ultra-low carbon mold slag %

    成分碱度Al2O3Fe2O3FMgONa2OC-total
    测验值1.166.301.805.801.0010.302.50
    下载: 导出CSV

    表  3  430不锈钢保护渣降温过程中析出物质

    Table  3.   Precipitated substances during cooling of 430 stainless steel mold flux

    温度/℃析出物质成分
    14501315Slag-liq cooling
    13151167Ca2SiO4
    11671099Bredigite+ Ca2SiO4
    10991042Bredigite + Ca2SiO4 + Ca4Si2F2O7
    10421000Bredigite + Ca3Si2O7+ Ca4Si2F2O7
    1000~992Na2CaAl4O8+Bredigite + Ca3Si2O7+ Ca4Si2F2O7
    992~921Combeite + Na2CaAl4O8 + Ca4Si2F2O7
    921~829Combeite + Na2CaAl4O8 + Na2CaSiO4
    829~815Combeite + Na2CaAl4O8 + NaF
    815~797Combeite + Na2CaAl4O8 + NaF + Na2MgSiO4
    797~793Nepheline+Combeite+Na2CaAl4O8+NaF + Na2MgSiO4
    793~792Nepheline + Combeite + NaF+ Na2MgSiO4 + Ca4Si2F2O7
    下载: 导出CSV
  • [1] ZHAI J, LI H, CHEN F T, et al. Effect of mold flux on edge depression defects of 430 stainless steel billet[J]. China Metallurgy, 2022, 32(5): 102-108. (翟俊, 李欢, 陈法涛, 等. 保护渣对430不锈钢铸坯边部凹陷缺陷的影响[J]. 中国冶金, 2022, 32(5): 102-108.

    ZHAI J, LI H, CHEN F T, et al. Effect of mold flux on edge depression defects of 430 stainless steel billet[J]. China Metallurgy, 2022, 32(5): 102-108.
    [2] MA J P, LI H. Effect of mold flux on surface quality of 430 stainless steel billet[J]. Continuous Casting, 2022(4): 29-33. (马骏鹏, 李欢. 保护渣对430不锈钢铸坯表面质量的影响[J]. 连铸, 2022(4): 29-33.

    MA J P, LI H. Effect of mold flux on surface quality of 430 stainless steel billet[J]. Continuous Casting, 2022(4): 29-33.
    [3] LEI Z L, ZHANG D D, MEI F, et al. Study on decrease of recarburization of ultra-low-carbon steel with ultra low carbon slag[J]. Continuous Casting, 2018, 43(5): 49-53. (雷志亮, 张东栋, 梅峰, 等. 超低碳保护渣控制钢水增碳的研究[J]. 连铸, 2018, 43(5): 49-53.

    LEI Z L, ZHANG D D, MEI F, et al. Study on decrease of recarburization of ultra-low-carbon steel with ultra low carbon slag[J]. Continuous Casting, 2018, 43(5): 49-53.
    [4] MENG X Y, WANG Y, ZHU M Y, et al. Analysis on influences of mold slag rim on channel pressure, oscillation marks and slag consumption[J]. Ansteel Technology, 2015(6): 1-5, 19. (孟祥宇, 汪宇, 朱苗勇, 等. 结晶器渣圈对渣道压力、振痕及渣耗影响的分析[J]. 鞍钢技术, 2015(6): 1-5, 19. doi: 10.3969/j.issn.1006-4613.2015.06.001

    MENG X Y, WANG Y, ZHU M Y, et al. Analysis on influences of mold slag rim on channel pressure, oscillation marks and slag consumption[J]. Ansteel Technology, 2015(6): 1-5, 19. doi: 10.3969/j.issn.1006-4613.2015.06.001
    [5] GRIEVESON P, BAGHA S, MACHINGAWUTA N, et al. Physical properties of casting powders: Part 2 Mineral logical constitution of slags formed by powders[J]. Iron Making and Steel Making, 1998, 15(14): 181-186.
    [6] KROMHOUT J, A. Mould powders for the hight speed continuous casting of cteel[D]. Delft: Delft University of Tenchnology, 2011.
    [7] JIANG W B, WEN G H, JIANG J, et al. Research status on mechanism of formation and growth of slag rim and affecting factors[J]. Continuous Casting, 2021(2): 7-13. (蒋文波, 文光华, 江婧, 等. 保护渣渣圈形成长大机理及影响因素研究现状[J]. 连铸, 2021(2): 7-13.

    JIANG W B, WEN G H, JIANG J, et al. Research status on mechanism of formation and growth of slag rim and affecting factors[J]. Continuous Casting, 2021(2): 7-13.
    [8] JIANG W B. Formation and control of slag rim in mold for continuous casting[D]. Chongqing: Chongqing University, 2022. (蒋文波. 连铸结晶器保护渣渣圈形成及控制[D]. 重庆: 重庆大学, 2022.

    JIANG W B. Formation and control of slag rim in mold for continuous casting[D]. Chongqing: Chongqing University, 2022.
    [9] FENG W M, XUE J H, XING G C, et al. Development of mold flux for continuous casting of Cr13 type martensitic stainless steel square billet[J]. Special Steel, 2023, 44(3): 53-58. (冯为民, 薛井恒, 邢国成, 等. Cr13型马氏体不锈钢方坯连铸保护渣的开发[J]. 特殊钢, 2023, 44(3): 53-58.

    FENG W M, XUE J H, XING G C, et al. Development of mold flux for continuous casting of Cr13 type martensitic stainless steel square billet[J]. Special Steel, 2023, 44(3): 53-58.
    [10] GUO W J, ZENG Y N, DI G X, et al. Thin slab protective slag on crystallization behavior[J]. Journal of North China University of Science and Technology, 2024, 46(3): 10-20. (郭文婧, 曾亚南, 邸高翔, 等. 超高速薄板坯保护渣组分对析晶行为影响的热力学研究[J]. 华北理工大学学报, 2024, 46(3): 10-20.

    GUO W J, ZENG Y N, DI G X, et al. Thin slab protective slag on crystallization behavior[J]. Journal of North China University of Science and Technology, 2024, 46(3): 10-20.
    [11] DI T C, WANG X J, LIU Z X, et al. Analysis on formation and growth mechanism of 430 stainless steel mold powder slag-bonding rim and control measures[J]. Special Steel, 2022, 43(5): 63-67. (邸天成, 王杏娟, 刘增勋, 等. 430不锈钢用连铸保护渣渣圈形成长大机理分析和控制措施[J]. 特殊钢, 2022, 43(5): 63-67. doi: 10.3969/j.issn.1003-8620.2022.05.013

    DI T C, WANG X J, LIU Z X, et al. Analysis on formation and growth mechanism of 430 stainless steel mold powder slag-bonding rim and control measures[J]. Special Steel, 2022, 43(5): 63-67. doi: 10.3969/j.issn.1003-8620.2022.05.013
    [12] YAN X P. Research on the influence of fluorine and boron on crystallization behavior of continuous casting slag film[D]. Tangshan: North China University of Science and Technology, 2022. (闫晓鹏. 氟及硼对连铸保护渣渣膜析晶行为影响规律研究[D]. 唐山: 华北理工大学, 2022.

    YAN X P. Research on the influence of fluorine and boron on crystallization behavior of continuous casting slag film[D]. Tangshan: North China University of Science and Technology, 2022.
    [13] WANG Z C. Heat transfer and lubrication behaviors of slag film for continuous casting of typical steel grades[D]. Changsha: Central South University, 2023. (王子超. 典型钢种连铸保护渣渣膜传热与润滑行为[D]. 长沙: 中南大学, 2023.

    WANG Z C. Heat transfer and lubrication behaviors of slag film for continuous casting of typical steel grades[D]. Changsha: Central South University, 2023.
    [14] LI X Y, HE F, ZHAO C B, et al. Study on crystallization behavior and heat transfer performance of CaO-SiO2 based continuous casting protective slag[J]. Wuhan University of Technology News, 2023, 45(12): 28-32, 73. (李晓阳, 何峰, 赵春宝, 等. CaO-SiO2基连铸保护渣的析晶行为与传热性能研究[J]. 武汉理工大学报, 2023, 45(12): 28-32, 73.

    LI X Y, HE F, ZHAO C B, et al. Study on crystallization behavior and heat transfer performance of CaO-SiO2 based continuous casting protective slag[J]. Wuhan University of Technology News, 2023, 45(12): 28-32, 73.
    [15] WANG S H, WANG Z H, LI X N, et al. Synthesis of anorthite powder by solid-state method and its application in transparent glaze[J]. Chinese Ceramics, 2024, 60(5): 66-72. (王少华, 王子晗, 李小女, 等. 固相法合成钙长石粉体及其在透明釉中的应用研究[J]. 中国陶瓷, 2024, 60(5): 66-72.

    WANG S H, WANG Z H, LI X N, et al. Synthesis of anorthite powder by solid-state method and its application in transparent glaze[J]. Chinese Ceramics, 2024, 60(5): 66-72.
    [16] DU F, WANG Y, LIANG X P, et al. Experimental research on slag film simulation of continuous casting mould fluxes[J]. Journal of Process Engineering, 2009, 9(1): 197-201. (杜方, 王雨, 梁小平, 等. 连铸保护渣渣膜模拟实验研究[J]. 过程工程学报, 2009, 9(1): 197-201. doi: 10.3321/j.issn:1009-606X.2009.z1.041

    DU F, WANG Y, LIANG X P, et al. Experimental research on slag film simulation of continuous casting mould fluxes[J]. Journal of Process Engineering, 2009, 9(1): 197-201. doi: 10.3321/j.issn:1009-606X.2009.z1.041
    [17] WEN Y L. Experimental study on sintering properties and melting speed of continuous casting mould fluxes[D]. Chongqing: Chongqing University, 2016. (温亚磊. 连铸保护渣烧结性能和熔化速度的实验研究[D]. 重庆: 重庆大学, 2016.

    WEN Y L. Experimental study on sintering properties and melting speed of continuous casting mould fluxes[D]. Chongqing: Chongqing University, 2016.
    [18] LI Q P, WANG Z, DUAN Z R, et al. Kinetic study of NaF gas formation during mold flux melting based on different fluorides by experimental and computational methods[J]. steel research int. 2024.
    [19] HAO Z Q, CHEN W Q, CARSTEN L, et al. Study on molten slag layer and slag film of mould flux used in slab casting of stainless steel 1Cr17[J]. Special Steel, 2009, 30(3): 16-18. (郝占全, 陈伟庆, CARSTEN L, 等. 不锈钢1Cr17板坯连铸过程中保护渣液渣层及渣膜的研究[J]. 特殊钢, 2009, 30(3): 16-18. doi: 10.3969/j.issn.1003-8620.2009.03.006

    HAO Z Q, CHEN W Q, CARSTEN L, et al. Study on molten slag layer and slag film of mould flux used in slab casting of stainless steel 1Cr17[J]. Special Steel, 2009, 30(3): 16-18. doi: 10.3969/j.issn.1003-8620.2009.03.006
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  34
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-21
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回