中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频感应加热烧结与热等静压烧结对粉末高速钢组织和性能影响研究

温家昕 施麒 周舸 陈立佳 刘辛 殷福星 梁盛隆 王学林 尚成嘉

温家昕, 施麒, 周舸, 陈立佳, 刘辛, 殷福星, 梁盛隆, 王学林, 尚成嘉. 高频感应加热烧结与热等静压烧结对粉末高速钢组织和性能影响研究[J]. 钢铁钒钛, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019
引用本文: 温家昕, 施麒, 周舸, 陈立佳, 刘辛, 殷福星, 梁盛隆, 王学林, 尚成嘉. 高频感应加热烧结与热等静压烧结对粉末高速钢组织和性能影响研究[J]. 钢铁钒钛, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019
WEN Jiaxin, SHI Qi, ZHOU Ge, CHEN Lijia, LIU Xin, YIN Fuxing, LIANG Shenglong, WANG Xuelin, SHANG Chengjia. Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019
Citation: WEN Jiaxin, SHI Qi, ZHOU Ge, CHEN Lijia, LIU Xin, YIN Fuxing, LIANG Shenglong, WANG Xuelin, SHANG Chengjia. Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 142-149. doi: 10.7513/j.issn.1004-7638.2025.04.019

高频感应加热烧结与热等静压烧结对粉末高速钢组织和性能影响研究

doi: 10.7513/j.issn.1004-7638.2025.04.019
基金项目: 阳江市合金材料与五金刀剪重点产业人才振兴计划专项资金项目(RCZX2022018);广东省学科类重点实验室评估专项资助项目 (2023B1212060043);广东省科学院打造综合产业技术创新中心行动资金项目 (2020GDASYL-20200504001, 2022GDASZH-2022010107,2022GDASZH-2022010109) 。
详细信息
    作者简介:

    温家昕,1998年出生,男,河南平顶山人,硕士研究生,主要从事粉末冶金高速钢方面的研究工作,E-mail:w1179539062@163.com

    通讯作者:

    施麒,1987年出生,男,浙江绍兴人,博士,高级工程师,长期从事钛及稀有金属粉末冶金研究工作,E-mail:shiqi@gdinm.com

  • 中图分类号: TF124

Study on the effects of high-frequency induction heated sintering and hot isostatic pressing sintering on microstructure and properties of powder metallurgy high-speed steel

  • 摘要: 以国产气雾化高速钢粉末为原料,通过高频感应加热烧结和热等静压烧结两种工艺制备粉末高速钢,研究了不同工艺对材料致密化、微观组织和力学性能的影响。结果表明,高频感应加热烧结工艺在短时低压下可制备出致密度接近95%的粉末高速钢,虽略低于热等静压工艺,但生产效率更高;在微观组织上,两种工艺制备的粉末高速钢表现出显著差异:高频感应加热烧结粉末高速钢由铁素体基体与大量类网状碳化物组成,热等静压烧结粉末高速钢则由铁素体基体与大量均匀分布的条块状碳化物组成。虽然高频感应加热烧结粉末高速钢的显微硬度、屈服强度、抗拉强度与延伸率略低于热等静压烧结样品,但性能仍相近。高频感应加热烧结工艺能够在短时间和低成本条件下制备出性能优异的粉末高速钢产品,特别适用于对成本和生产周期有较高要求的工业领域。
  • 图  1  (a)粉末SEM形貌;(b)粉末粒径分布;(c)粉末EBSD晶粒取向分布;(d)粉末EBSD质量;(e)高频感应加热烧结工艺;(f)热等静压工艺

    Figure  1.  (a) SEM diagram of powder morphology; (b) Powder particle size distribution graph; (c) Grain orientation distribution diagram of powder EBSD; (d) Powder EBSD quality diagram; (e) High frequency induction heated sintering process diagram; (f) HIP process diagram

    图  2  室温拉伸试样(单位:mm)

    Figure  2.  Diagram of tensile test sample at room temperature (unit: mm)

    图  3  (a)高频感应加热烧结样品截面形貌; (b)热等静压样品截面形貌; (c)高频感应加热烧结样品截面孔隙分布宏观形貌

    Figure  3.  (a) SEM diagram of cross section of HFIHS sample; (b) SEM diagram of cross section of HIP sample; (c) Macroscopic diagram of cross-sectional pore distribution of HFIHS sample

    图  4  粉末高速钢的XRD谱

    Figure  4.  XRD diagram of powder metallurgy high-speed steel

    图  5  粉末高速钢腐蚀后的显微形貌

    (a)(b)高频感应加热烧结粉末高速钢及局部放大;(c)(d)热等静压粉末高速钢及局部放大

    Figure  5.  Microstructure of powder metallurgy high-speed steel after corrosion

    图  6  碳化物评价参数统计

    (a)碳化物粒径统计;(b)碳化物圆形度统计

    Figure  6.  Statistical graph of carbide evaluation parameters

    图  7  粉末高速钢EBSD晶粒取向分布

    (a)高频感应加热烧结粉末高速钢;(b)热等静压粉末高速钢

    Figure  7.  EBSD image showing grain orientation map of PM-HSS

    图  8  晶粒尺寸统计

    Figure  8.  Grain size distribution

    图  9  粉末高速钢坯料的力学性能

    (a)显微硬度;(b)拉伸性能;(c)应力-应变曲线

    Figure  9.  Mechanical properties of powder metallurgy high-speed steel

    图  10  粉末高速钢的拉伸断口形貌

    (a)~(c) 高频感应加热烧结样品拉伸断口及局部放大;(d)(e) 热等静压样品拉伸断口及局部放大

    Figure  10.  Tensile fracture morphology of powder metallurgy high-speed steel

    表  1  高速钢粉末化学成分

    Table  1.   Chemical composition of high-speed steel powder %

    CCrVMoSiWMnNFe
    1.9719.74.00.970.70.60.30.21余量
    下载: 导出CSV
  • [1] YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅰ)[J]. Powder Metallurgy Industry, 2024, 34(1): 1-10. (于洋, 徐圣航, 廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(上)[J]. 粉末冶金工业, 2024, 34(1): 1-10.

    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅰ)[J]. Powder Metallurgy Industry, 2024, 34(1): 1-10.
    [2] YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅱ)[J]. Powder Metallurgy Industry, 2024, 34(2): 1-10. (于洋, 徐圣航, 廖俊. 粉末冶金工模具钢的生产技术及应用研究进展(下)[J]. 粉末冶金工业, 2024, 34(2): 1-10.

    YU Y, XU S H, LIAO J. Progress on manufacture of powder metallurgy HSS/tool steels and development on their applications(Ⅱ)[J]. Powder Metallurgy Industry, 2024, 34(2): 1-10.
    [3] XU G L, HUANG P, SUN X, et al. Research status and development trend of high-speed-steel’s preparation and heat treatment process[J]. Materials China, 2020, 39(1): 70-77. (徐桂丽, 黄鹏, 孙溪, 等. 高速钢制备和热处理工艺的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(1): 70-77. doi: 10.7502/j.issn.1674-3962.201811007

    XU G L, HUANG P, SUN X, et al. Research status and development trend of high-speed-steel’s preparation and heat treatment process[J]. Materials China, 2020, 39(1): 70-77. doi: 10.7502/j.issn.1674-3962.201811007
    [4] WU L Z. Developments and challenges of China high-speed steel industry over last decade[M]// Advanced Steels. Berlin, Heidelberg: Springer, 2011.
    [5] WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4. (王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.

    WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4.
    [6] DOBRZAŃSKI L A, MATULA G, VÁREZ A, et al. Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels[J]. Journal of Materials Processing Technology, 2004, 157: 324-330.
    [7] OUYANG Q, YU Y L, HUANG Y P, et al. Properties of the PM M3∶2 high speed steel in different sintering atmospheres[J]. Powder Metallurgy Technology, 2016, 34(5): 351-355. (欧阳齐, 于永亮, 黄雍平, 等. 不同烧结气氛下M3∶2粉末高速钢的性能研究[J]. 粉末冶金技术, 2016, 34(5): 351-355. doi: 10.3969/j.issn.1001-3784.2016.05.006

    OUYANG Q, YU Y L, HUANG Y P, et al. Properties of the PM M3∶2 high speed steel in different sintering atmospheres[J]. Powder Metallurgy Technology, 2016, 34(5): 351-355. doi: 10.3969/j.issn.1001-3784.2016.05.006
    [8] GIMENEZ S, ZUBIZARRETA C, TRABADELO V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions[J]. Materials Science and Engineering: A, 2008, 480(1-2): 130-137.
    [9] QIU Y, LIN Y J, ZHANG Q Y, et al. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303. (邱悦, 林耀军, 张覃轶, 等. 真空热压超高碳超高铬模具钢研究[J]. 粉末冶金技术, 2021, 39(4): 297-303.

    QIU Y, LIN Y J, ZHANG Q Y, et al. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing[J]. Powder Metallurgy Technology, 2021, 39(4): 297-303.
    [10] KIM H C, OH D Y, JIANG G J, et al. Synthesis of WC and dense WC-5 vol.% Co hard materials by high-frequency induction heated combustion[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 368(1-2): 10-17. doi: 10.1016/j.msea.2003.08.105
    [11] KIM B R, WOO K D, DOH J M, et al. Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide[J]. Ceramics International, 2009, 35(8): 3395-3400. doi: 10.1016/j.ceramint.2009.06.012
    [12] KIM H C, KIM D K, WOO K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26(1): 48-54.
    [13] KIM H C, SHON I J, JEONG I K, et al. Rapid sintering of ultra fine WC and WC-Co hard materials by high-frequency induction heated sintering and their mechanical properties[J]. Metals and Materials International, 2007, 13(1): 39-45. doi: 10.1007/BF03027821
    [14] KIM H C, SHON I J , YOON J K, et al. One step synthesis and densification of ultra-fine WC by high-frequency induction combustion [J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(3): 202-209.
    [15] KIM H C, YOON J K, DOH J M, et al. Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 435: 717-724.
    [16] KIM H C, SHON I J, YOON J K, et al. Rapid sintering of ultrafine WC-Ni cermets[J]. International Journal of Refractory Metals & Hard Materials, 2006, 24(6): 427-431.
    [17] KIM H C, SHON I J, MUNIR Z A. Rapid sintering of ultra-fine WC-10% Co by high-frequency induction heating[J]. Journal of Materials Science, 2005, 40(11): 2849-2854. doi: 10.1007/s10853-005-2422-9
    [18] KIM H C, OH D Y, SHON I J. Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process[J]. International Journal of Refractory Metals and Hard Materials, 2004, 22(4-5): 197-203. doi: 10.1016/j.ijrmhm.2004.06.006
    [19] CAO R, SHEN Y, ZHOU Z Z, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high-speed steel[J]. Transactions of Metal Heat Treatment, 2022, 43(4): 116-123. (曹睿, 沈漪, 周珍珍, 等. 不同冷却速度对M390粉末冶金高速钢组织与硬度的影响[J]. 材料热处理学报, 2022, 43(4): 116-123.

    CAO R, SHEN Y, ZHOU Z Z, et al. Effect of different cooling rates on microstructure and hardness of M390 powder metallurgy high-speed steel[J]. Transactions of Metal Heat Treatment, 2022, 43(4): 116-123.
    [20] HU Y, NIU Z G, LI K J, et al. Composition optimization and heat treatment study of carbide strengthened novel invar alloys[J]. Materials Research and Applications, 2024, 18(2): 292-298. (胡瑜, 牛振国, 栗克建, 等. 碳化物增强新型因瓦合金的成分优化及热处理工艺研究[J]. 材料研究与应用, 2024, 18(2): 292-298.

    HU Y, NIU Z G, LI K J, et al. Composition optimization and heat treatment study of carbide strengthened novel invar alloys[J]. Materials Research and Applications, 2024, 18(2): 292-298.
    [21] YANG Y, YANG H K, HE Q, et al. The effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Applications, 2023, 17(2): 303-309. (杨壹, 杨浩坤, 何强, 等. 时效热处理对Fe-Mn-Al-C轻质高锰钢拉伸和冲击性能的影响[J]. 材料研究与应用, 2023, 17(2): 303-309.

    YANG Y, YANG H K, HE Q, et al. The effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Applications, 2023, 17(2): 303-309.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回