中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb-Ti微合金钢中第二相粒子对奥氏体晶粒长大行为的影响

黄健 徐海健 庞宗旭 张建平 王勇 李天怡

黄健, 徐海健, 庞宗旭, 张建平, 王勇, 李天怡. Nb-Ti微合金钢中第二相粒子对奥氏体晶粒长大行为的影响[J]. 钢铁钒钛, 2025, 46(4): 174-181. doi: 10.7513/j.issn.1004-7638.2025.04.023
引用本文: 黄健, 徐海健, 庞宗旭, 张建平, 王勇, 李天怡. Nb-Ti微合金钢中第二相粒子对奥氏体晶粒长大行为的影响[J]. 钢铁钒钛, 2025, 46(4): 174-181. doi: 10.7513/j.issn.1004-7638.2025.04.023
HUANG Jian, XU Haijian, PANG Zongxu, ZHANG Jianping, WANG Yong, LI Tianyi. The influence of second-phase particles on austenite grain growth behavior in Nb-Ti microalloyed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 174-181. doi: 10.7513/j.issn.1004-7638.2025.04.023
Citation: HUANG Jian, XU Haijian, PANG Zongxu, ZHANG Jianping, WANG Yong, LI Tianyi. The influence of second-phase particles on austenite grain growth behavior in Nb-Ti microalloyed steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 174-181. doi: 10.7513/j.issn.1004-7638.2025.04.023

Nb-Ti微合金钢中第二相粒子对奥氏体晶粒长大行为的影响

doi: 10.7513/j.issn.1004-7638.2025.04.023
详细信息
    作者简介:

    黄健,1992年出生,男,蒙古族,辽宁沈阳人,硕士,工程师,通讯作者,研究方向:先进钢铁结构材料,E-mail:jianhuang1118@163.com

    通讯作者:

    黄健,1992年出生,男,蒙古族,辽宁沈阳人,硕士,工程师,通讯作者,研究方向:先进钢铁结构材料,E-mail:jianhuang1118@163.com

  • 中图分类号: TF76,TG142.13

The influence of second-phase particles on austenite grain growth behavior in Nb-Ti microalloyed steel

  • 摘要: 对Nb-Ti微合金化钢在10501250 ℃条件下分别进行5~240 min等温奥氏体化的热处理试验,研究其奥氏体晶粒长大行为,利用Thermo-calc及TEM对不同加热工艺下的第二相粒子进行分析,通过HUMPHREYS理论对晶粒长大方式进行了预测。结果表明:随着奥氏体化温度的升高,NbC粒子中的Nb/Ti质量比逐渐减小,10501100 ℃保温1 h时晶粒尺寸细小均匀,温度升高至1150 ℃时发生晶粒异常长大现象,1250 ℃加热时晶粒尺寸粗化明显,各工艺下晶粒的实际长大方式与HUMPHREYS模型预测相同。综合考虑加热过程中奥氏体晶粒尺寸及微合金元素的溶解与析出规律,试验钢的最佳加热温度为 1200 ℃左右。
  • 图  1  试验钢在不同加热工艺下的显微组织与晶粒尺寸分布

    Figure  1.  Microstructure and grain size distribution of the test steel under different heating processes

    (a)1 050 ℃/60 min; (b)1 100 ℃/60 min; (c)1 150 ℃/60 min;(d)1 200 ℃/60 min; (e)1 250 ℃/60 min; (f)1 200 ℃/120 min;

    图  2  试验钢在不同加热工艺下的晶粒尺寸分布

    Figure  2.  Grain size distribution of the test steel under different heating processes

    (a)1 050 ℃/60 min; (b)1 100 ℃/60 min; (c)1 150 ℃/60 min;(d)1 200 ℃/60 min; (e)1 250 ℃/60 min;

    图  3  不同加热温度下奥氏体晶粒尺寸随保温时间变化曲线

    Figure  3.  The variation curves of austenite grain size with holding time at different heating temperatures

    图  4  lnD - lnt线性拟合曲线

    Figure  4.  Linear fitting curve of lnD - lnt

    图  5  lnD-1/T线性拟合曲线

    Figure  5.  Linear fitting curve of lnD-1/T

    图  6  Thermo-calc热力学计算结果

    (a)(b)各相含量随温度变化关系;(c) TiN中组元含量随温度变化关系;(d)NbC中组元含量随温度变化关系

    Figure  6.  Thermo-calc thermodynamic calculation results

    图  7  试验钢在不同加热温度下保温 60 min 的第二相形貌及能谱

    Figure  7.  The morphology and energy spectrum of second-phase particles held for 60 minutes at different heating temperatures

    (a)(a1)1 050 ℃; (b)(b1)1 100 ℃; (c)(c1)1 150 ℃; (d)(d1)1 200 ℃

    图  8  晶粒异常长大示意

    Figure  8.  Schematic diagram of abnormal grain growth

    图  9  不同工艺下的晶粒长大方式预测

    Figure  9.  Prediction of grain growth patterns under different processes

    表  1  试样化学成分

    Table  1.   Chemical composition of test material %

    C Si Mn P S Cr Ni Mo Nb Ti Al Fe
    0.059 0.21 1.60 0.0076 0.0012 $\leqslant $0.6 0.050 0.014 0.033 余量
    下载: 导出CSV

    表  2  奥氏体晶粒在不同温度下的长大规律

    Table  2.   Growth rule of austenite grains at different temperatures

    温度/℃ n K 温度/℃ n K
    1050 0.19189 4.14076 1200 0.13806 15.57769
    1100 0.19568 6.25400 1250 0.1315 23.54515
    1150 0.18785 7.73186
    下载: 导出CSV

    表  3  Nb/Ti质量比随温度变化关系

    Table  3.   The relationship between Nb/Ti mass ratio and temperature

    温度/℃ Nb/Ti质量比 温度/℃ Nb/Ti质量比
    1050 7.73 1150 1.36
    1100 4.85 1200 0.58
    下载: 导出CSV

    表  4  HUMPHREYS模型中的参数

    Table  4.   Parameters in the HUMPHREYS model

    加热温度/℃ 保温时间/min 不均匀因子 平均晶粒直径/μm 析出相直径/nm
    1050 30 3.05 20.16 18.56
    1100 30 2.72 32.13 23.16
    1150 30 5.5 35.69 36.69
    1200 30 3.89 48.13 68.83
    1250 30 2.29 63.61 0
    下载: 导出CSV
  • [1] FERNANDEZ J, ILLESCAS S, GUILEMANY J M. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel[J]. Materials Letters, 2007, 61(11/12): 2389-2392.
    [2] ZHANG Z W. Research progress on high-strength low-alloy steel (HSLA)[J]. Materials China, 2016, 35(2): 141-151. (张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35(2): 141-151.

    ZHANG Z W. Research progress on high-strength low-alloy steel (HSLA)[J]. Materials China, 2016, 35(2): 141-151.
    [3] MAALEKIAN M, RADIS R, MILITZER M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel[J]. Acta Materialia, 2012, 60(3): 1015-1026. doi: 10.1016/j.actamat.2011.11.016
    [4] LIU X, DU Q L, LI X. Effect of heating process on austenitic grain growth of Nb-Ti microalloys steel[J]. Iron & Steel, 2019, 54(9): 116-120. (刘祥, 杜群力, 李新. 加热工艺对Nb-Ti微合金钢奥氏体晶粒长大的影响[J]. 钢铁, 2019, 54(9): 116-120.

    LIU X, DU Q L, LI X. Effect of heating process on austenitic grain growth of Nb-Ti microalloys steel[J]. Iron & Steel, 2019, 54(9): 116-120.
    [5] YU S, TAO Z, DU L X. Study on the kinetics of austenite grain growth in medium manganese steel[J]. Hot Working Technology, 2020, 49(6): 121-123. (于帅, 陶振, 杜林秀. 中锰钢的奥氏体晶粒长大动力学研究[J]. 热加工工艺, 2020, 49(6): 121-123.

    YU S, TAO Z, DU L X. Study on the kinetics of austenite grain growth in medium manganese steel[J]. Hot Working Technology, 2020, 49(6): 121-123.
    [6] XUE L, ZHANG L W, DING H C, et al. Comparison of austenite grain growth behavior between 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49. (薛莉, 张立文, 丁浩晨, 等. 20CrMnTi钢和20钢奥氏体晶粒长大行为对比[J]. 金属热处理, 2023, 48(10): 45-49.

    XUE L, ZHANG L W, DING H C, et al. Comparison of austenite grain growth behavior between 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49.
    [7] DING Z M, FANG J F, LIANG B, et al. Dynamics of austenite grain growth in V-Nb-(Ti) microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 88-92. (丁志敏, 方建飞, 梁博, 等. V-Nb-(Ti)微合金化钢奥氏体晶粒长大的动力学[J]. 材料热处理学报, 2013, 34(S1): 88-92.

    DING Z M, FANG J F, LIANG B, et al. Dynamics of austenite grain growth in V-Nb-(Ti) microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(S1): 88-92.
    [8] LIANG W, WU R, HU J, et al. Effect of heating process on Nb-Ti microalloys in high strength steel[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2063-2073. (梁文, 吴润, 胡俊, 等. 加热工艺对Nb-Ti微合金化高强钢的影响[J]. 中南大学学报(自然科学版), 2019, 50(9): 2063-2073.

    LIANG W, WU R, HU J, et al. Effect of heating process on Nb-Ti microalloys in high strength steel[J]. Journal of Central South University(Science and Technology), 2019, 50(9): 2063-2073.
    [9] HUI Y J, YU Y, WANG C, et al. Austenitic grain coarsening behavior of titanium microalloyed hot-rolled high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 140-145. (惠亚军, 于洋, 王畅, 等. 钛微合金化热轧高强钢奥氏体晶粒粗化行为[J]. 材料热处理学报, 2014, 35(12): 140-145.

    HUI Y J, YU Y, WANG C, et al. Austenitic grain coarsening behavior of titanium microalloyed hot-rolled high-strength steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(12): 140-145.
    [10] YANG X L. The effect of heating temperature on solid solution and grain growth of second phase particles in pipeline steel[J]. Iron Steel Vanadium Titanium, 2002, 23 (2): 11-15. (杨秀亮. 加热温度对管线钢第二相粒子固溶及晶粒长大的影响[J]. 钢铁钒钛, 2002, 23( 2) : 11-15.

    YANG X L. The effect of heating temperature on solid solution and grain growth of second phase particles in pipeline steel[J]. Iron Steel Vanadium Titanium, 2002, 23 (2): 11-15.
    [11] RAZZAK MA, PEREZ M, SOURMAIL T. A simple model for abnormal grain growth[J]. ISIJ INTERNATIONAL, 2012, 52(12): 2278-2282. doi: 10.2355/isijinternational.52.2278
    [12] NES E, RYUM N, HUNDERI O. On the Zener drag[J]. Acta Metallurgica, 1985, 33(1): 11-22. doi: 10.1016/0001-6160(85)90214-7
    [13] GLADMAN T. On the theory of the effect of precipitate particles on grain growth in metals[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1966, 294(1438): 298-309.
    [14] HUMPHREYS F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅱ. The effect of secondphaseparticles[J]. Acta Materialia, 1997, 45(12): 5031-5039. doi: 10.1016/S1359-6454(97)00173-0
    [15] JANA S, MISHRA R S, BAUMANN J A, et al. Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy[J]. Materials Science and Engineering A, 2010, 528(1): 189-199. doi: 10.1016/j.msea.2010.08.049
    [16] FERRY M, HAMILTON N E, HUMPHREYS F J. Continuous and discontinuous grain coarsening in a fine-grained particle-containing Al-Sc alloy[J]. Acta Materialia, 2005, 53(4): 1097-1109. doi: 10.1016/j.actamat.2004.11.006
    [17] CHEN K, GAAN W, OKMAOTO K, et al. The mechanism of grain coarsening in friction stir-welded AA5083 after heat treatment[J]. Metallurgical and Materials Transactions A, 2011, 42(2): 488-507. doi: 10.1007/s11661-010-0426-9
    [18] BECK P A, KREMER J C, DEMER L J, et al. Grain growth in high-purity aluminium and in an aluminum-magnesium alloy[J]. Trans AIME, 1948, 175: 372-394.
    [19] ZHANG, S S, LI M Q, LIU Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering: A, 2011, 528: 4967-4972. doi: 10.1016/j.msea.2011.02.089
    [20] CHEN M A, WU C S, YANG M, et al. Response of second phase particles in Ti-V-Nb microalloyed steel during weld thermal cycling[J]. Acta Metallurgica Sinica, 2004, 40(2): 148-154. (陈茂爱, 武传松, 杨敏, 等. Ti-V-Nb微合金钢第二相粒子在焊接热循环过程中的变化规律[J]. 金属学报, 2004, 40(2): 148-154.

    CHEN M A, WU C S, YANG M, et al. Response of second phase particles in Ti-V-Nb microalloyed steel during weld thermal cycling[J]. Acta Metallurgica Sinica, 2004, 40(2): 148-154.
    [21] FENG R, LI S L, LI Z S, et al. Characteristic of diphase precipitate of Nb-V-Ti microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 37-41. (冯锐, 李胜利, 李贞顺, 等. Nb-V-Ti微合金钢复合析出相的特征[J]. 材料热处理学报, 2013, 34(2): 37-41.

    FENG R, LI S L, LI Z S, et al. Characteristic of diphase precipitate of Nb-V-Ti microalloyed steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 37-41.
    [22] LUO A A, KUBIC R C, TARTAGLIA J M. Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754[J]. Metallurgical & Materials Transactions A, 2003, 34: 2549-2557.
    [23] TSUJI N, OKUNO S, MATSUURA T. Mechanical properties as a function of grain size in ultrafine grained aluminum and iron fabricated by ARB and annealing process[J]. Materials Science Forum, 2003(Pt.3): 426/432.
    [24] ANDERSEN I, GRONG O, RYUM N. Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—II. Abnormal grain growth[J]. Acta Metallurgica Et Materialia, 1995, 43(7): 2689-2700. doi: 10.1016/0956-7151(94)00489-5
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-22
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回