中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高速摄影和FLUENT的MIG焊接熔滴过渡研究

吉光亚 李科 常瀚文 胡嘉睿 张资政

吉光亚, 李科, 常瀚文, 胡嘉睿, 张资政. 基于高速摄影和FLUENT的MIG焊接熔滴过渡研究[J]. 钢铁钒钛, 2025, 46(4): 190-196. doi: 10.7513/j.issn.1004-7638.2025.04.025
引用本文: 吉光亚, 李科, 常瀚文, 胡嘉睿, 张资政. 基于高速摄影和FLUENT的MIG焊接熔滴过渡研究[J]. 钢铁钒钛, 2025, 46(4): 190-196. doi: 10.7513/j.issn.1004-7638.2025.04.025
JI Guangya, LI Ke, CHANG Hanwen, HU Jiarui, ZHANG Zizheng. Research on droplet transfer in MIG welding based on high-speed photography and FLUENT[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 190-196. doi: 10.7513/j.issn.1004-7638.2025.04.025
Citation: JI Guangya, LI Ke, CHANG Hanwen, HU Jiarui, ZHANG Zizheng. Research on droplet transfer in MIG welding based on high-speed photography and FLUENT[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(4): 190-196. doi: 10.7513/j.issn.1004-7638.2025.04.025

基于高速摄影和FLUENT的MIG焊接熔滴过渡研究

doi: 10.7513/j.issn.1004-7638.2025.04.025
基金项目: 山西省自然科学基金项目(202203021221161);山西省研究生科研创新项目(2024KY654)。
详细信息
    作者简介:

    吉光亚,1996年出生,男,湖南浏阳人,硕士研究生,研究方向为焊接电弧物理及金属增材制造,E-mail:438643644@qq.com

    通讯作者:

    李科,1980年出生,男,山西长治人,博士,副教授,研究方向为焊接电弧物理及金属增材制造,E-mail:codylee@163.com

  • 中图分类号: TQ320.66

Research on droplet transfer in MIG welding based on high-speed photography and FLUENT

  • 摘要: 针对304L不锈钢MIG焊接过程中的熔滴过渡现象,运用FLUENT软件进行数值模拟,借助高速摄影系统进行拍摄,对焊接电流分别为150、180 A和 260 A时的熔滴过渡形态特征和频率进行分析。研究结果显示,随着焊接电流的增大,熔滴所受电磁收缩力和等离子流力逐渐占据主导地位;随着熔滴温度逐渐升高,表面张力随之变小,使得熔滴从焊丝末端分离所需的重力减小,导致熔滴直径逐渐变小,过渡频率逐渐加快,依次呈现出大滴过渡、射滴过渡和射流过渡。通过对比三组焊接电流的高速摄影和数值模拟结果,二者在过渡周期、特征时间和熔滴尺寸等方面的试验值与模拟值相似度均分别超过87%、90%、91%,表明所采用的数值模拟模型具有较高的可靠性。
  • 图  1  MIG焊熔滴过渡试验装置示意

    Figure  1.  Schematic diagram of the experimental setup for droplet transfer in MIG welding

    图  2  二维几何模型(单位:mm)

    Figure  2.  2D geometric model

    图  3  数值模拟物理模型

    Figure  3.  Physical model of numerical simulation

    图  4  大滴过渡的高速摄影

    Figure  4.  High-speed photography images of globular transfer

    图  5  大滴过渡的数值模拟

    Figure  5.  Numerical simulation diagrams of globular transfer

    图  6  射滴过渡的高速摄影

    Figure  6.  High-speed photography images of projected transfer

    图  7  射滴过渡的数值模拟

    Figure  7.  Numerical simulation diagrams of projected transfer

    图  8  射流过渡的高速摄影

    Figure  8.  High-speed photography images of spray transfer

    图  9  射流过渡的数值模拟

    Figure  9.  Numerical simulation diagrams of spray transfer

    表  1  选材化学成分表

    Table  1.   Chemical compositions of selected materials %

    材质CMnSiSPNiCrFe
    试板≤0.080≤2.00≤1.00≤0.030≤0.0458.00 ~ 10.5018.00 ~ 20.00余量
    焊丝0.0251.900.750.0150.01410.5018.00余量
    下载: 导出CSV

    表  2  304L不锈钢的数值模拟物性参数

    Table  2.   Physical property parameters of 304L stainless steel for numerical simulation

    钢液熔点
    Tm/℃
    钢液密度
    ρ/(kg·m−3
    钢液动力粘性
    µ/(Pa·s)
    钢液比热容
    C/(J·kg−1·℃−1
    磁导率
    µ0/(H·m−1
    电导率
    σ/(S·m−1)
    表面张力系数
    γ/(N·m−1
    重力加速度
    g/(m·s−2
    1.45×103 8×103 2×10−3 1.5 ×102 4π×10−7 7.7×10−5 1.2 9.8
    下载: 导出CSV

    表  3  氩气的数值模拟物性参数

    Table  3.   Physical property parameters of argon for numerical simulation

    密度/
    (kg·m−3
    粘度/
    (Pa·s)
    导热系数/
    (W·m−1·K−1)
    比热容/
    (kJ·kg−1·K−1)
    1.784 2.02 ×10−5 0.01795 0.52
    下载: 导出CSV
  • [1] FU S Q. Numerical simulation study on arc shape and droplet transfer behavior in ultrasonic-assisted MIG welding[D]. Nanchang: Nanchang University, 2024. (付水淇. 超声波辅助MIG焊接电弧形态与熔滴过渡行为的数值模拟研究[D]. 南昌: 南昌大学, 2024.

    FU S Q. Numerical simulation study on arc shape and droplet transfer behavior in ultrasonic-assisted MIG welding[D]. Nanchang: Nanchang University, 2024.
    [2] ZHU M, SHI Y, WANG G L, et al. Metal transfer behaviors in consumable double-electrode GMAW process[J]. Journal of Mechanical Engineering, 2013, 49(12): 50-54. (朱明, 石玗, 王桂龙, 等. 双丝旁路耦合电弧GMAW熔滴过渡特性分析[J]. 机械工程学报, 2013, 49(12): 50-54. doi: 10.3901/JME.2013.12.050

    ZHU M, SHI Y, WANG G L, et al. Metal transfer behaviors in consumable double-electrode GMAW process[J]. Journal of Mechanical Engineering, 2013, 49(12): 50-54. doi: 10.3901/JME.2013.12.050
    [3] ALLUM, C J. Metal transfer in arc welding as a varicose instability. I. Varicose instabilities in a current-carrying liquid cylinder with surface charge[J]. Journal of Physics D Applied Physics, 2000, 18(7): 1431-1446.
    [4] CAO M G. Study of the effect of droplet oscillation momentum on the surface forming quality of Wire and Arc Additive Manufacturing[D]. Zhoushan: Zhejiang Ocean University, 2023. (曹美光. 熔滴振荡动量对电弧增材制造表面成形质量影响的研究[D]. 舟山: 浙江海洋大学, 2023.

    CAO M G. Study of the effect of droplet oscillation momentum on the surface forming quality of Wire and Arc Additive Manufacturing[D]. Zhoushan: Zhejiang Ocean University, 2023.
    [5] HERTEL M, SPILLE-KOHOFF A, FUSSEL U. et al. Numerical simulation of droplet detachment in pulsed gas-metal arc welding including the influence of metal vapour[J]. Journal of Physics D Applied Physics, 2013, 46(22): 4003-4014.
    [6] FAN H G, KOVACEVIC R. Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding[J]. Metallurgical& Materials Transactions B, 1999, 30(4): 791-801.
    [7] LIU W Q, SHAN Y G, YUAN Z. Simulation of droplet transfer process in GMAW[J]. Hot Working Technology, 2016, 45(21): 215-219. (刘维球, 单彦广, 袁张. GMAW焊接熔滴过渡过程的模拟研究[J]. 热加工工艺, 2016, 45(21): 215-219.

    LIU W Q, SHAN Y G, YUAN Z. Simulation of droplet transfer process in GMAW[J]. Hot Working Technology, 2016, 45(21): 215-219.
    [8] LI K, CHEN F H, ZHU Y J, et al. Simulation and experiment study on droplet transfer of MIG welding for Low-carbon steel[J]. Hot Working Technology, 2020, 49(7): 149-152,156. (李科, 陈峰华, 朱彦军, 等. 低碳钢MIG焊熔滴过渡的模拟与试验研究[J]. 热加工工艺, 2020, 49(7): 149-152,156.

    LI K, CHEN F H, ZHU Y J, et al. Simulation and experiment study on droplet transfer of MIG welding for Low-carbon steel[J]. Hot Working Technology, 2020, 49(7): 149-152,156.
    [9] WANG R C, WANG H, LI H J, et al. Research on numerical simulation of weld pool behavior in pulsed MIG[J]. New Technology& New Process, 2023(8): 47-53. (王瑞超, 王皓, 李会军, 等. 脉冲MIG焊熔池行为的数值模拟研究[J]. 新技术新工艺, 2023(8): 47-53.

    WANG R C, WANG H, LI H J, et al. Research on numerical simulation of weld pool behavior in pulsed MIG[J]. New Technology& New Process, 2023(8): 47-53.
    [10] John D. Anderson. Computational fluid dynamics: the basics and its applications[M]. Beijing: China MachinePress, 2009.40. (约翰D. 安德森, 计算流体力学基础及其应用[M]. 北京: 机械工业出版社, 2009.40.

    John D. Anderson. Computational fluid dynamics: the basics and its applications[M]. Beijing: China MachinePress, 2009.40.
    [11] LIU W Q, LI Q, LIU F D, et al. Research on the electromagnetic constriction force of droplet transfer in laser-arc hybrid welding [J]. Applied Laser, 2016, 36(2): 188-192. (刘万强, 李彦清, 刘凤德, 等. 激光-电弧复合焊熔滴过渡的电磁收缩力研究[J]. 应用激光, 2016, 36(2): 188-192.

    LIU W Q, LI Q, LIU F D, et al. Research on the electromagnetic constriction force of droplet transfer in laser-arc hybrid welding [J]. Applied Laser, 2016, 36(2): 188-192.
    [12] ZHAO X Y. Numerical analysis of arc-droplet pool behavior in TIG-MIG hybrid welding[D]. Jinan: Shandong University, 2022. (赵昕宇. TIG-MIG复合焊电弧-溶滴-溶池数值分析[D]. 济南: 山东大学, 2022.

    ZHAO X Y. Numerical analysis of arc-droplet pool behavior in TIG-MIG hybrid welding[D]. Jinan: Shandong University, 2022.
    [13] ZHOU S J, DUAN R, SU Z, et al. Numerical simulation of weld pool formation driven by surface tension in laser welding of austenitic stainless steel sheet[J]. Electric Welding Machine, 2024, 54(6): 87-93. (周世杰, 段瑞, 苏哲, 等. 奥氏体不锈钢薄板激光焊表面张力驱动熔池形成的数值模拟分析[J]. 电焊机, 2024, 54(6): 87-93. doi: 10.7512/j.issn.1001-2303.2024.06.14

    ZHOU S J, DUAN R, SU Z, et al. Numerical simulation of weld pool formation driven by surface tension in laser welding of austenitic stainless steel sheet[J]. Electric Welding Machine, 2024, 54(6): 87-93. doi: 10.7512/j.issn.1001-2303.2024.06.14
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  39
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 网络出版日期:  2025-08-31
  • 刊出日期:  2025-08-31

目录

    /

    返回文章
    返回