中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重要性度量的脱硫剂加入量预测特征选择方法

赵海杰 但斌斌 刘洋 任泽宇 都李平 周纯

赵海杰, 但斌斌, 刘洋, 任泽宇, 都李平, 周纯. 基于重要性度量的脱硫剂加入量预测特征选择方法[J]. 钢铁钒钛, 2025, 46(5): 46-53, 64. doi: 10.7513/j.issn.1004-7638.2025.05.005
引用本文: 赵海杰, 但斌斌, 刘洋, 任泽宇, 都李平, 周纯. 基于重要性度量的脱硫剂加入量预测特征选择方法[J]. 钢铁钒钛, 2025, 46(5): 46-53, 64. doi: 10.7513/j.issn.1004-7638.2025.05.005
ZHAO Haijie, DAN Binbin, LIU Yang, REN Zeyu, DU Liping, ZHOU Chun. A feature selection method for desulfurizer addition prediction based on importance measure[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 46-53, 64. doi: 10.7513/j.issn.1004-7638.2025.05.005
Citation: ZHAO Haijie, DAN Binbin, LIU Yang, REN Zeyu, DU Liping, ZHOU Chun. A feature selection method for desulfurizer addition prediction based on importance measure[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 46-53, 64. doi: 10.7513/j.issn.1004-7638.2025.05.005

基于重要性度量的脱硫剂加入量预测特征选择方法

doi: 10.7513/j.issn.1004-7638.2025.05.005
基金项目: 国家自然科学基金项目(51475340);湖北省重点研发计划项目(2022BAA059);湖北省中央引导地方科技发展专项(2020ZYYD022)。
详细信息
    作者简介:

    赵海杰,1999年出生,男,浙江诸暨人,硕士研究生,研究方向:工艺参数分析与预测,E-mail:15257541674@163.com

    通讯作者:

    但斌斌,1970年出生,男,湖北鄂州人,教授,研究方向:炼钢铁水预处理工艺与设备优化,E-mail:danbinbin@163.com

  • 中图分类号: TP391.4

A feature selection method for desulfurizer addition prediction based on importance measure

  • 摘要: 针对铁水KR脱硫生产工序中参数维度高、特征冗余性强以及目标变量与特征间相关性较弱的问题,提出了一种基于重要性度量的集成式特征选择方法IMFS(Feature selection based on importance measure)。在过滤式预筛选阶段,通过最大互信息系数(MIC)度量各参数与目标变量的关联性以及各参数之间冗余性,并根据最大相关、最小冗余准则缩小候选参数规模;在嵌入式精选阶段,引入LightGBM算法作为量化信息贡献度与数据敏感度的依托模型,采用熵权法对双重度量结果进行赋权融合;最后,根据特征重要性系数,结合GBT序列向前搜索策略优化特征子集。试验结果表明,IMFS相较于其他方法,在消除冗余特征和提升预测准确性方面具有显著优势,并且能够有效平衡特征数量与预测精度。
  • 图  1  基于重要性度量的集成式特征选择方法IMFS框架

    Figure  1.  An integrated feature selection method IMFS framework based on importance measure

    图  2  某特征异常值处理前后对比

    (a) 未剔除异常值;(b) 剔除异常值

    Figure  2.  Schematic diagram of a characteristic abnormal value before and after processing

    图  3  特征与目标变量的增益性度量

    Figure  3.  Gain measure of feature and target variable

    图  4  加噪前后的数据分布趋势

    (a) 处理前硫含量;(b) 处理前铁水质量

    Figure  4.  Data distribution trend before and after adding noise

    图  5  特征重要性系数$ {I}_{i} $

    Figure  5.  Feature importance coefficient $ {\mathit{I}}_{\mathit{i}} $

    图  6  不同特征选择方法下的预测效果

    (a) 全特征;(b) Pearson相关系数;(c) Spearman相关系数;(d) MIC最大互信息系数;(e) LightGBM嵌入式;(f) IMFS

    Figure  6.  The prediction effect under different feature selection methods

    表  1  序列向前搜索过程

    Table  1.   Sequence forward search process

    Iteration timesCurrent subsetEvaluation number
    $ ({a}_{0} > {a}_{1} > {a}_{2} > {a}_{3}) $
    Optimal subset
    1Satisfy characteristic$ {f}_{i} $$ {a}_{3} $$ {f}_{1}{f}_{2} $
    2$ {f}_{1}{f}_{2}{f}_{3} $$ {a}_{2} $$ {f}_{1}{f}_{2}{f}_{4} $
    $ {f}_{1}{f}_{2}{f}_{4} $$ {a}_{0} $
    $ {f}_{1}{f}_{2}{f}_{5} $$ {a}_{1} $
    3$ {f}_{1}{f}_{2}{f}_{3}{f}_{4} $$ {a}_{2} $$ Stop\left({f}_{1}{f}_{2}{f}_{4}\right) $
    $ {f}_{1}{f}_{2}{f}_{4}{f}_{5} $$ {a}_{1} $
    下载: 导出CSV

    表  2  某钢厂脱硫工艺数据实例

    Table  2.   An example of desulfurization process data in a steel plant

    Number Steel grade Class Group Mixing
    speed/(r·min−1)
    Process
    duration/min
    1 M2A4-2 2 1 68 34
    2 SPHC(MD) 2 4 75 33
    3 B(H) 1 4 70 25
    6650 H2B1-1 B 1 1 65 29
    12670 B(H1) 2 4 74 31
    下载: 导出CSV

    表  3  部分工艺参数统计分析

    Table  3.   Analysis of statistical indexes of some process parameters

    Statistics Temperature/℃ S content/% Si content/% Mixing speed/(r·min−1) Depth/mm CaO added/kg Metal quality/kg
    Before Range 12111471 0.005~0.540 0.030~1.600 5~110 42005040 5~11305 135700401800
    Median 1362 0.036 0.386 74 4590 1690.5 254600
    Average 1360 0.041 0.403 71.8 4587 1858.7 253758
    Standard 32.3 0.022 0.161 9.1 214 724.8 11840.6
    After Range 12811443 0.005~0.070 0.057~0.752 49~95 42005040 550~3272 227300278200
    Median 1363 0.036 0.387 74 4591 1661 254800
    Average 1362 0.037 0.395 71.9 4588 1751.6 254068
    Standard 29.8 0.012 0.126 8.9 214 493.8 9810.7
    下载: 导出CSV

    表  4  特征敏感性评估表

    Table  4.   Feature sensitivity assessment

    Feature$ {S}_{i} $Feature$ {S}_{i} $Feature$ {S}_{i} $
    B_T5.07S_T1.84B_W7.66
    B_S6.75P_S3.41T_S15.45
    B_Si6.07I_D4.38S_D9.04
    P_U4.19L_H1.10
    下载: 导出CSV

    表  5  特征子集评价表

    Table  5.   Feature subset evaluation

    Optimal composition R2 RMSE MAE
    S_D、T_S、B_S、B_W 0.8990 162.1303 114.7563
    S_D、T_S、B_S、B_W、P_U 0.9075 159.5028 111.7163
    S_D、T_S、B_S、B_W、P_U、B_Si 0.9075 155.1069 109.3095
    S_D、T_S、B_S、B_W、P_U、B_Si、
    B_T
    0.9107 152.4032 107.4982
    S_D、T_S、B_S、B_W、P_U、B_Si、
    B_T、I_D
    0.9073 155.3352 109.3237
    S_D、T_S、B_S、B_W、P_U、B_Si、
    B_T、I_D、P_S
    0.8973 163.4473 114.9965
    S_D、T_S、B_S、B_W、P_U、B_Si、
    B_T、I_D、P_S、L_H
    0.9022 155.1182 108.8067
    S_D、T_S、B_S、B_W、P_U、B_Si、
    B_T、I_D、P_S、L_H、S_T
    0.8978 163.0450 115.7291
    下载: 导出CSV

    表  6  不同特征选择方法所选特征

    Table  6.   Features selected by different feature selection methods

    MethodFeature subset
    PearsonS_D、B_S、T_S、L_H
    SpearmanB_T、B_S、B_Si、T_S、B_W、L_H
    MICB_S、B_W、B_Si、B_T、T_S、L_H、P_U
    LightGBMS_D、B_S、B_W、T_S、P_U、B_T、P_S、B_Si、I_D
    IMFSS_D、T_S、B_S、B_W、P_U、B_Si、B_T
    下载: 导出CSV

    表  7  模型超参数设置

    Table  7.   Super parameter setting of the model

    KNNDNNRFXGBoostSVR
    KBatch_sizeLrEpochsN_estimatorsMax_depthN_estimatorsLrKernelDegreeCoef0
    5320.01320100101000.1poly31.0
    下载: 导出CSV

    表  8  传统特征选择方法对脱硫剂加入量预测的评价结果

    Table  8.   Evaluation results of the traditional feature selection method for the prediction of desulfurizer addition

    MethodModelR2RMSEMAEt/s
    PearsonKNN0.869187.48156.660.085
    DNN0.879185.39150.680.086
    RF0.893163.96133.291.378
    XGBoost0.884175.86148.280.133
    SVR0.881177.17149.362.128
    SpearmanKNN0.865191.24160.530.012
    DNN0.881183.4147.920.097
    RF0.891167.37133.521.554
    XGBoost0.889170.77139.250.152
    SVR0.883174.76146.342.374
    MICKNN0.856203.51174.350.013
    DNN0.894167.73134.070.103
    RF0.893164.48132.121.815
    XGBoost0.883184.24148.370.143
    SVR0.889169.77138.532.43
    LightGBMKNN0.873182.01153.250.018
    DNN0.897163.55131.820.113
    RF0.896161.26130.642.092
    XGBoost0.894162.73130.880.15
    SVR0.899156.17127.352.384
    IMFSKNN0.884167.97146.440.013
    DNN0.908152.58118.410.103
    RF0.912144.65113.861.754
    XGBoost0.913142.79112.340.145
    SVR0.897158.96126.482.843
    All featuresKNN0.729330.98298.470.216
    DNN0.773287.17254.380.137
    RF0.770290.71257.172.482
    XGBoost0.765297.22263.290.178
    SVR0.787271.56239.363.895
    下载: 导出CSV

    表  9  深度学习特征提取方法的预测性能

    Table  9.   Prediction performance of deep learning feature extraction methods

    Algorithm Optimizer Batch size Lr Epochs R2 RMSE MAE
    ANN Adam 64 0.01 500 0.84 203.64 129.60
    GRNN 1.0 0.82 215.77 156.01
    1D-CNN Adam 32 0.005 800 0.86 182.80 133.32
    下载: 导出CSV
  • [1] GAO J, CUI L, WANG W, et al. Prediction of sulfur content during steel refining process based on machine learning methods[J]. Steel Research International, 2024, 96(3): 2400662-2400662.
    [2] GONG H J, LIANG X T, ZHOU Z C, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 173-178. (龚洪君, 梁新腾, 周遵传, 等. 旋转喷吹脱硫技术在铁水预处理上的应用研究[J]. 钢铁钒钛, 2020, 41(1): 173-178. doi: 10.7513/j.issn.1004-7638.2020.01.030

    GONG H J, LIANG X T, ZHOU Z C, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 173-178. doi: 10.7513/j.issn.1004-7638.2020.01.030
    [3] ADHIWIGUNA IBGS, KARAGÜLMEZ G, KESKIN O, et al. Investigation on applicability of lime as desulfurization agent for molten cast iron[J]. Steel Research International, 2025, 96(1): 2400416.
    [4] ZHENG Y, ZUO K L. Prediction model of desulfurizer consumption based on BP neural network and regression[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 130-134. (郑毅, 左康林. 基于BP神经网络和回归的脱硫粉剂预报模型[J]. 钢铁钒钛, 2017, 38(4): 130-134. doi: 10.7513/j.issn.1004-7638.2017.04.023

    ZHENG Y, ZUO K L. Prediction model of desulfurizer consumption based on BP neural network and regression[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 130-134. doi: 10.7513/j.issn.1004-7638.2017.04.023
    [5] LIU Z X, DU J Q, LUO J G, et al. Review on stability feature selection[J]. Computer Engineering and Applications, 2025, 61(7): 81-95. (刘梓萱, 杜建强, 罗计根, 等. 稳定性特征选择研究综述[J]. 计算机工程与应用, 2025, 61(7): 81-95. doi: 10.3778/j.issn.1002-8331.2406-0410

    LIU Z X, DU J Q, LUO J G, et al. Review on stability feature selection[J]. Computer Engineering and Applications, 2025, 61(7): 81-95. doi: 10.3778/j.issn.1002-8331.2406-0410
    [6] WANG N, LI X F, NIE L D, et al. High-precision vehicle energy consumption prediction using mutual information feature selection[J]. Journal of Tongji University (Natural Science), 2024, 52(S1): 39-45. (王宁, 李秀峰, 聂辽栋, 等. 基于MI特征选择的车辆能耗高精度预测方法[J]. 同济大学学报(自然科学版), 2024, 52(S1): 39-45. doi: 10.11908/j.issn.0253-374x.24794

    WANG N, LI X F, NIE L D, et al. High-precision vehicle energy consumption prediction using mutual information feature selection[J]. Journal of Tongji University (Natural Science), 2024, 52(S1): 39-45. doi: 10.11908/j.issn.0253-374x.24794
    [7] YAN X M, CHEN C, WANG N, et al. Prediction of desulfurization rate during LF refining process based on random search and AdaBoost model[J]. Journal of Materials and Metallurgy, 2023, 22(5): 430-436, 443. (严旭梅, 陈超, 王楠, 等. 基于随机搜索算法和AdaBoost模型预测LF精炼过程脱硫率[J]. 材料与冶金学报, 2023, 22(5): 430-436, 443.

    YAN X M, CHEN C, WANG N, et al. Prediction of desulfurization rate during LF refining process based on random search and AdaBoost model[J]. Journal of Materials and Metallurgy, 2023, 22(5): 430-436, 443.
    [8] FANG Y F, DAN B B, WU J W, et al. Method for predicting desulfurizer dosage based on ensemble learning[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 361-367. (方一飞, 但斌斌, 吴经纬, 等. 基于集成学习的脱硫剂加入量预测方法[J]. 武汉科技大学学报, 2024, 47(5): 361-367. doi: 10.3969/j.issn.1674-3644.2024.05.006

    FANG Y F, DAN B B, WU J W, et al. Method for predicting desulfurizer dosage based on ensemble learning[J]. Journal of Wuhan University of Science and Technology, 2024, 47(5): 361-367. doi: 10.3969/j.issn.1674-3644.2024.05.006
    [9] XU M, LEI H, HE J Y, et al. Predicting the endpoint steel temperature of RH refining using improved XGBoost[J]. Journal of Materials and Metallurgy, 2023, 22(5): 437-443. (徐猛, 雷洪, 何江一, 等. 利用改进XGBoost预测RH精炼终点钢水温度[J]. 材料与冶金学报, 2023, 22(5): 437-443.

    XU M, LEI H, HE J Y, et al. Predicting the endpoint steel temperature of RH refining using improved XGBoost[J]. Journal of Materials and Metallurgy, 2023, 22(5): 437-443.
    [10] GU T Y, GUO J S, LI Z X, et al. Detecting associations based on the multi-variable maximum information coefficient[J]. IEEE Access, 2021, 9: 54912-54922. doi: 10.1109/ACCESS.2021.3070925
    [11] JU Y, SUN G Y, CHEN Q H, et al. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting[J]. IEEE Access, 2019: 28309-28318.
    [12] LI Y Z, DAI W, ZHANG W F. Bearing fault feature selection method based on weighted multidimensional feature fusion[J]. IEEE Access, 2020, 8: 19008-19025. doi: 10.1109/ACCESS.2020.2967537
    [13] ZHANG S G, ZHOU T, SUN L, et al. v-Support vector regression model based on Gauss-Laplace mixture noise characteristic for wind speed prediction[J]. Entropy, 2019, 21(11): 1056.
  • 加载中
图(6) / 表(9)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  11
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-22
  • 录用日期:  2025-09-05
  • 修回日期:  2025-09-05
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回