中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立式行波磁场作用下板坯连铸过程金属液流动与渣金界面动力学行为模拟分析

许琳 裴群武 高兢

许琳, 裴群武, 高兢. 立式行波磁场作用下板坯连铸过程金属液流动与渣金界面动力学行为模拟分析[J]. 钢铁钒钛, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006
引用本文: 许琳, 裴群武, 高兢. 立式行波磁场作用下板坯连铸过程金属液流动与渣金界面动力学行为模拟分析[J]. 钢铁钒钛, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006
XU Lin, PEI Qunwu, GAO Jing. Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006
Citation: XU Lin, PEI Qunwu, GAO Jing. Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 54-64. doi: 10.7513/j.issn.1004-7638.2025.05.006

立式行波磁场作用下板坯连铸过程金属液流动与渣金界面动力学行为模拟分析

doi: 10.7513/j.issn.1004-7638.2025.05.006
基金项目: 沈阳市科技人才专项资助项目(RC230046);辽宁省科技厅面上项目(2025-MS-288)。
详细信息
    作者简介:

    许琳,女,1989年出生,黑龙江人,博士,副教授,主要从事电磁流体力学工作。E-mail:lin_xu1989@163.com

    通讯作者:

    高兢,性别:女,1983年出生,辽宁人,硕士,副教授,主要从事磁流体仿真工作。E-mail:xulin1@sie.edu.cn

  • 中图分类号: TF777.1,TP391.9

Numerical simulation of the influence of vertical traveling wave magnetic field on the behavior of molten steel flow and steel slag interface fluctuation in a continuous casting slab mold

  • 摘要: 在绿色低碳发展趋势下,当代冶金工业追求高速高效连铸以促进可持续发展。鉴于此,提出一种立式行波磁场控流技术,旨在优化和控制金属液流动行为,克服现存技术局限,为连铸过程的绿色低碳转型提供理论依据和技术支持。研究过程以1450 mm×230 mm断面连铸板坯结晶器为对象,首先建立结晶器电磁连铸过程三维多物理场耦合数学模型,其次模拟研究无磁场、立式行波磁场及全幅一段水平直流磁场作用下板坯连铸结晶器内金属液流动与渣金界面行为,最后对比评价两种磁场形式对结晶器内钢液流动控制效果的影响。结果表明,无磁场作用时,渣金界面最大高度为22.3 mm;当全幅一段电磁制动器施加的电流为1350 A时,渣金界面最大高度降至18.6 mm;而当立式行波磁场减速器施加的电流仅为600 A时,渣金界面最大高度显著降至13.9 mm。可见,相较于全幅一段电磁制动器,立式行波磁场控流器能以更低能耗实现对结晶器内上回流区钢液流动的有效控制,从而稳定渣金界面波动,防止表面卷渣。
  • 图  1  板坯连铸结晶器模型示意

    (a) 网格模型;(b) 几何模型

    Figure  1.  Schematic model of slab continuous casting mold

    图  2  立式行波磁场控流装置和全幅一段电磁制动控流装置几何模型示意

    (a) 立式行波磁场控流装置;(b) 全幅一段电磁制动控流装置

    Figure  2.  Schematic diagram of the geometric model for a vertical traveling wave magnetic field flow control device and a Ruler-EMBr flow control device

    图  3  结晶器内洛伦兹力分布

    (a) 洛伦兹力矢量分布;(b) 洛伦兹力云图分布

    Figure  3.  Distribution of Lorentz force in the mold

    图  4  结晶器中心截面钢液速度分布

    (a) 无磁场;(b) 全幅一段水平直流磁场;(c) 立式行波磁场

    Figure  4.  Distribution of molten steel velocity in the central section of wide face in the mold

    图  5  结晶器内钢液速度等值面分布

    (a) 无磁场;(b) 全幅一段水平直流磁场;(c) 立式行波磁场

    Figure  5.  Iso-surface distribution of molten steel velocity in the mold

    图  6  结晶器渣金界面处钢液速度分布

    (a) 无磁场;(b) 全幅一段水平直流磁场;(c) 立式行波磁场

    Figure  6.  Steel-slag interface velocity distribution of molten steel in the mold

    图  7  结晶器钢液表面流速分布和湍动能强度分布

    (a) 钢液表面速度;(b) 钢液运动湍动能

    Figure  7.  Distribution of surface velocity and turbulent kinetic energy of molten steel in the mold

    图  8  结晶器内渣金界面三维波动特性分布

    (a) 无磁场;(b) 全幅一段水平直流磁场;(c) 立式行波磁场

    Figure  8.  Distribution of 3-D fluctuation characteristics of steel-slag interface fluctuation in the mold

    图  9  结晶器中心截面处渣金界面波动高度

    Figure  9.  Steel-slag interface fluctuation height in the central section of wide surface in the mold

    图  10  不同磁场作用下结晶器内渣金界面动力学行为比较

    Figure  10.  Comparison of the dynamic behavior of steel-slag interface in the mold under different magnetic field conditions

    图  11  结晶器内渣金界面整体平均波动高度

    Figure  11.  Average vertical displacement fluctuation of the steel-slag interface in the mold

    图  12  结晶器内渣金界面速度均匀性指数

    Figure  12.  Velocity distribution uniformity index across the steel-slag interface in the mold

    图  13  不同磁场作用下结晶器内渣金界面稳定性评价

    Figure  13.  Stability evaluation of the steel-slag interface in the mold under different magnetic field conditions

    表  1  板坯结晶器计算参数

    Slab cross section/mm × mm Mold effective height/mm Computational domain/mm SEN exit cross section/mm
    1450×230800400065×80
    SEN depth/mmNozzle cavity/mmCasting speed/(m∙min‒1)Steel density/(kg∙m‒3)
    170801.87020
    Steel viscosity/(Pa∙s)Steel conductivity/(S∙m‒1)Steel permeability/(H∙m‒1)Liquid steel density/(kg∙m‒3)
    0.00627.14×1051.26×1063500
    Surface tension/(N∙m‒1)Traveling wave magnetic field current/ATraveling wave magnetic field frequency/HzDirect current magnetic field/A
    1.260031350
    下载: 导出CSV
  • [1] ZHU M Y. A study of transport phenomena and key technologies for high-speed continuous casting of steel[J]. Iron and Steel, 2021, 56(7): 1-12. (朱苗勇. 高拉速连铸过程传输行为特征及关键技术探析[J]. 钢铁, 2021, 56(7): 1-12.

    ZHU M Y. A study of transport phenomena and key technologies for high-speed continuous casting of steel[J]. Iron and Steel, 2021, 56(7): 1-12.
    [2] ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019, 54(8): 21-36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019, 54(8): 21-36.

    ZHU M Y. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019, 54(8): 21-36.
    [3] ZHU M Y, LOU W T. Numerical simulation of multiphase flow and reaction kinetics during steelmaking process[J]. Journal of Materials and Metallurgy, 2022, 22(1): 1-19. (朱苗勇, 娄文涛. 炼钢过程多相流及其反应动力学数值模拟研究[J]. 材料与冶金学报, 2022, 22(1): 1-19.

    ZHU M Y, LOU W T. Numerical simulation of multiphase flow and reaction kinetics during steelmaking process[J]. Journal of Materials and Metallurgy, 2022, 22(1): 1-19.
    [4] REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600. (任忠鸣, 雷作胜, 李传军, 等. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600. doi: 10.11900/0412.1961.2019.00373

    REN Z M, LEI Z S, LI C J, et al. New study and development on electromagnetic field technology in metallurgical processes[J]. Acta Metallurgica Sinica, 2020, 56(4): 583-600. doi: 10.11900/0412.1961.2019.00373
    [5] XU L, PEI Q W, LI Y, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134. (许琳, 裴群武, 李阳, 等. 电磁连铸过程FTSR结晶器多相传输行为的研究[J]. 钢铁钒钛, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019

    XU L, PEI Q W, LI Y, et al. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
    [6] VAKHRUSHEV A, KARIMI-SIBAKI E, BOHACEK J, et al. Impact of submerged entry nozzle (SEN) immersion depth on meniscus flow in continuous casting mold under electromagnetic brake (EMBr)[J]. Metals, 2023, 13(3): 444-464. doi: 10.3390/met13030444
    [7] CUI H N, SUN J K, ZHANG J S, et al. Large eddy simulation of novel EMBr effect on flow pattern in thin slab casting mold with multi-port SEN and ultra-high casting speed[J]. J. Manuf. Process., 2025, 133(3): 448-465.
    [8] WEI Z J, WANG T, FENG C, et al. Modeling and simulation of multi-phase and multi-physical fields for slab continuous casting mold under ruler electromagnetic braking[J]. Metall. Mater. Trans. B, 2024, 55(4): 2194-2208. doi: 10.1007/s11663-024-03085-3
    [9] LIU Z Q, LI B K, XIAO L J, et al. Modeling progress of high-temperature melt multiphase flow in continuous casting mold[J]. Acta Metallurgica Sinica, 2022, 58(10): 1236-1252. (刘中秋, 李宝宽, 肖丽俊, 等. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252. doi: 10.11900/0412.1961.2022.00175

    LIU Z Q, LI B K, XIAO L J, et al. Modeling progress of high-temperature melt multiphase flow in continuous casting mold[J]. Acta Metallurgica Sinica, 2022, 58(10): 1236-1252. doi: 10.11900/0412.1961.2022.00175
    [10] LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22. (罗森, 杨宇威, 王卫领, 等. 高拉速连铸结晶器电磁控流技术发展[J]. 材料与冶金学报, 2023, 22(1): 1-22.

    LUO S, YANG Y W, WANG W L, et al. Development of electromagnetic flow control technology for high speed casting mold[J]. Journal of Materials and Metallurgy, 2023, 22(1): 1-22.
    [11] VILA A, LINDLBAUER F, ZHANG Z, et al. Simulation and optimization of electromagnetic stirring and braking in slab continuous casting mold[J]. Berg Huettenmaenn Monatsh, 2025, 170(1): 37-44. doi: 10.1007/s00501-024-01539-4
    [12] XIAO H, WANG P, ZHU J L, et al. Effect of deceleration mode of traveling wave magnetic field on the liquid steel transportation behavior in the mold of slab casting[J]. Journal of Mechanical Engineering, 2023, 59(18): 219-227. (肖红, 王璞, 朱晶亮, 等. 行波磁场减速模式对板坯连铸结晶器内传输行为的影响[J]. 机械工程学报, 2023, 59(18): 219-227. doi: 10.3901/JME.2023.18.219

    XIAO H, WANG P, ZHU J L, et al. Effect of deceleration mode of traveling wave magnetic field on the liquid steel transportation behavior in the mold of slab casting[J]. Journal of Mechanical Engineering, 2023, 59(18): 219-227. doi: 10.3901/JME.2023.18.219
    [13] HE J G, DENG A Y, XU X J, et al. Effect of electromagnetic stirring position on liquid steel flow and liquid level fluctuation in continuous casting mold for wide thick slab[J]. Continuous Casting, 2022, 4: 50-58. (何建国, 邓安元, 许秀杰, 等. 电磁搅拌宽厚板结晶器内钢液流动和液面波动[J]. 连铸, 2022, 4: 50-58.

    HE J G, DENG A Y, XU X J, et al. Effect of electromagnetic stirring position on liquid steel flow and liquid level fluctuation in continuous casting mold for wide thick slab[J]. Continuous Casting, 2022, 4: 50-58.
    [14] XIE X X, LUO S, CHEN Y, et al. Effect of electromagnetic stirring on flow, solidification and liquid level fluctuations in slab mold[J]. Continuous Casting, 2025, 44(2): 7-14. (解晓晓, 罗森, 陈耀, 等. 电磁搅拌对板坯结晶器内钢液流动、凝固和液面波动的影响[J]. 连铸, 2025, 44(2): 7-14.

    XIE X X, LUO S, CHEN Y, et al. Effect of electromagnetic stirring on flow, solidification and liquid level fluctuations in slab mold[J]. Continuous Casting, 2025, 44(2): 7-14.
    [15] SUN X H, LI B, LU H B, et al. Steel slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold[J]. Metals, 2019, 9(9): 983-999. doi: 10.3390/met9090983
    [16] LI B, LU H B, ZHONG Y B, et al. Numerical simulation for the influence of EMS position on fluid flow and inclusion removal in a slab continuous casting mold[J]. ISIJ Int., 2020, 60(6): 1204-1212. doi: 10.2355/isijinternational.ISIJINT-2019-666
    [17] LIU G L, LU H B, LI B, et al. Influence of M-EMS on fluid flow and initial solidification in slab continuous casting[J]. Materials, 2021, 14(13): 3681-3697. doi: 10.3390/ma14133681
    [18] XU L, PEI Q W, LI N, et al. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 112-123. (许琳, 裴群武, 李楠, 等. 多区域独立可控电磁制动对结晶器内钢液非均匀流动与渣金界面行为影响的研究[J]. 钢铁钒钛, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017

    XU L, PEI Q W, LI N, et al. Study on the effect of multi area controllable electromagnetic braking on behavior of non-uniform molten steel flow and steel-slag interface in the mold[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 112-123. doi: 10.7513/j.issn.1004-7638.2025.01.017
    [19] XU L, WANG E G, KARCHER C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018, 49(5): 2779-2793. doi: 10.1007/s11663-018-1342-4
    [20] XU L, KARCHER C, WANG E G. Numerical simulation of melt flow, heat transfer and solidification in CSP continuous casting mold with vertical-combined electromagnetic braking[J]. Metall. Mater. Trans. B, 2023, 54(4): 1646-1664. doi: 10.1007/s11663-023-02784-7
    [21] XU L, HAN Z F, KARCHER C, et al. Melt flow, heat transfer and solidification in a flexible thin slab continuous casting mold with vertical-combined electromagnetic braking[J]. J. Iron Steel Res. Int., 2024, 31(2): 401-415. doi: 10.1007/s42243-023-01062-9
    [22] ZHANG A H, MA D Z, JIAN W W, et al. Numerical simulation of argon blowing behavior inside an independent adjustable combination electromagnetic brake mold[J]. Continuous Casting, 2024, 4: 38-46. (张安昊, 马丹竹, 建伟伟, 等. 独立可调式组合电磁制动结晶器内吹氩行为数值模拟[J]. 连铸, 2024, 4: 38-46.

    ZHANG A H, MA D Z, JIAN W W, et al. Numerical simulation of argon blowing behavior inside an independent adjustable combination electromagnetic brake mold[J]. Continuous Casting, 2024, 4: 38-46.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-18
  • 录用日期:  2025-08-29
  • 修回日期:  2025-08-29
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回