中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的板坯加热炉性能预测模型研究

刘勇 宁榛 廖哲晗 朱焱麟 唐政 付芹 邓超

刘勇, 宁榛, 廖哲晗, 朱焱麟, 唐政, 付芹, 邓超. 基于机器学习的板坯加热炉性能预测模型研究[J]. 钢铁钒钛, 2025, 46(5): 65-74. doi: 10.7513/j.issn.1004-7638.2025.05.007
引用本文: 刘勇, 宁榛, 廖哲晗, 朱焱麟, 唐政, 付芹, 邓超. 基于机器学习的板坯加热炉性能预测模型研究[J]. 钢铁钒钛, 2025, 46(5): 65-74. doi: 10.7513/j.issn.1004-7638.2025.05.007
LIU Yong, NING Zhen, LIAO Zhehan, ZHU Yanlin, TANG Zheng, FU Qin, DENG Chao. Study on performance of Machine-Learning-Based prediction model for slab reheating furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 65-74. doi: 10.7513/j.issn.1004-7638.2025.05.007
Citation: LIU Yong, NING Zhen, LIAO Zhehan, ZHU Yanlin, TANG Zheng, FU Qin, DENG Chao. Study on performance of Machine-Learning-Based prediction model for slab reheating furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 65-74. doi: 10.7513/j.issn.1004-7638.2025.05.007

基于机器学习的板坯加热炉性能预测模型研究

doi: 10.7513/j.issn.1004-7638.2025.05.007
详细信息
    作者简介:

    刘勇,1972年出生,男,四川阆中人,硕士,正高级工程师,主要从事热连轧工艺技术研究及产品开发工作,E-mail:liuy@pzhsteel.com.cn

    通讯作者:

    朱焱麟,1989年出生,男,重庆市人,博士研究生,工程师,主要从事数据驱动的新材料设计与数字孪生驱动的生产力提升研究,E-mail:ali.yanlinzhu@outlook.com

  • 中图分类号: TF319, TP181

Study on performance of Machine-Learning-Based prediction model for slab reheating furnaces

  • 摘要: 基于国内某钢铁厂1 450 mm热连轧加热炉生产线采集的8297组数据,建立了四组不同输入变量的XGBoost和LSTM模型,对出炉钢温、单耗和烧损进行了预测和比较分析。结果表明,LSTM模型在出炉钢温和烧损的预测中表现出色,决定系数R2均超过0.95,预测精度和稳定性均较高;而XGBoost模型在单耗预测方面表现优异,决定系数达0.94以上变化趋势稳定。通过对比分析得出,LSTM在出炉钢温和烧损的预测中具有更高的可靠性,而XGBoost在单耗预测上精度更高。研究还显示,LSTM因门控机制擅长捕捉时序依赖(如钢温、烧损),而XGBoost通过特征组合优化对静态参数(如单耗)更敏感。将两种模型联合建模构建LSTM-XGBoost联合模型,分别处理时序特征与静态特征,应用于加热炉工艺控制,可进一步提升出炉钢温、单耗和烧损的预测精度,为钢铁行业加热工艺的优化控制和资源的高效利用提供了理论支持与数据依据。
  • 图  1  XGBoost的训练流程

    Figure  1.  XGBoost training workflow

    图  2  部分输入特征与出炉钢温、单耗和烧损的皮尔逊相关系数

    (a)出炉钢温;(b)单耗;(c)烧损

    Figure  2.  Pearson correlation coefficient values between selected input features and Td, Ei, and Bo

    图  3  部分输入特征与出炉钢温、单耗和烧损的互信息值

    (a)出炉钢温;(b)单耗;(c)烧损

    Figure  3.  Mutual information values between selected input features and Td, Ei and Bo

    图  4  LSTM预测值与实际值对比(条件1)

    Figure  4.  Comparison between LSTM predicted values and actual values (condition1)

    图  5  出炉钢温预测结果对比

    Figure  5.  Comparison of Td prediction results

    (a) RMSE ; (b) R2

    图  6  单耗预测结果对比

    Figure  6.  Comparison of Ei prediction results

    (a) RMSE; (b) R2

    图  7  烧损预测结果对比

    Figure  7.  Comparison of Bo prediction results

    (a) RMSE;(b) R2

    表  1  机器学习模型的输入与输出特征参数

    Table  1.   Input and output feature parameters of the machine-learning models

    ConditionInput featuresOutput features
    1DbLbTitpthtstOgpOghOgsTdEiBo
    2DbLbTitOgpOghOgs
    3DbLbTitpthtstTpThTs
    4DbLbTitTpThTs
    下载: 导出CSV

    表  2  模型超参数调优配置

    Table  2.   Hyperparameter tuning configurations for the models

    Model Hyperparameter Search scope Optimal value
    XGBoost Tree depth [3, 5, 7, 10] 7
    Learning rate [0.01, 0.05, 0.1, 0.2] 0.1
    Subsample [0.6, 0.8, 1.0] 0.8
    L1 regularization coefficient [0, 0.1, 0.5] 0.1
    LSTM Number of hidden
    layer units
    [32, 64, 128] 64
    Time steps [5, 10, 15] 10
    Dropout [0.1, 0.2, 0.3] 0.2
    Optimizer [Adam, RMSprop, SGD] Adam
    下载: 导出CSV

    表  3  XGBoost模型预测能力评价指标

    Table  3.   Evaluation metrics for the predictive capability of the XGBoost model

    No.RMSER2
    TdEiBoTdEiBo
    19.990.0540.1410.860.950.85
    211.170.0540.150.830.950.83
    36.590.060.1970.940.940.70
    49.00.0630.2310.890.940.59
    下载: 导出CSV

    表  4  LSTM模型预测能力评价指标

    Table  4.   Evaluation metrics for the predictive capability of the LSTM model

    No. RMSE R2
    Td Ei Bo Td Ei Bo
    1 5.7 0.12 0.08 0.95 0.79 0.96
    2 4.69 0.10 0.09 0.97 0.86 0.95
    3 5.28 0.10 0.08 0.96 0.84 0.95
    4 5.50 0.11 0.08 0.96 0.81 0.96
    下载: 导出CSV
  • [1] LU B, TANG K, CHEN D, et al. A novel approach for lean energy operation based on energy apportionment model in reheating furnace[J]. Energy, 2019, 182: 1239-1249. doi: 10.1016/j.energy.2019.06.076
    [2] LIAO Y X, SHE J H, WU M, et al. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace[J]. IEEE transactions on industrial electronics, 2009, 56(7): 2704-2714. doi: 10.1109/TIE.2009.2019753
    [3] WEI E Z, PENG Y H. Status and prospect of control technology for slab reheatingfurnace(A)[J]. Metallurgical Industry Automation, 2010, 34(3): 5-9. (卫恩泽, 彭燕华. 板坯加热炉控制技术现状及发展(上)[J]. 冶金自动化, 2010, 34(3): 5-9.

    WEI E Z, PENG Y H. Status and prospect of control technology for slab reheatingfurnace(A)[J]. Metallurgical Industry Automation, 2010, 34(3): 5-9.
    [4] ZHANG Q G, LI S Y, CHEN L Q. "Black Box" test and application of mathematical model for walking beam slab reheating furnace[J]. Industrial Furnace, 2012, 34(3): 5-7. (张强国, 李仕一, 陈亮全. 步进梁式板坯加热炉数学模型的“黑匣子”测试与应用[J]. 工业炉, 2012, 34(3): 5-7. doi: 10.3969/j.issn.1001-6988.2012.03.002

    ZHANG Q G, LI S Y, CHEN L Q. "Black Box" test and application of mathematical model for walking beam slab reheating furnace[J]. Industrial Furnace, 2012, 34(3): 5-7. doi: 10.3969/j.issn.1001-6988.2012.03.002
    [5] YANG X J, DUAN Y, HE S F, et al. Prediction of slab unit energy consumption in steel rollingheating furnace based on all influencing factors[J]. Energy for Metallurgical Industry, 2024, 43(3): 14-18. (杨筱静, 段毅, 何胜方, 等. 基于全影响因素的轧钢加热炉板坯单耗预测[J]. 冶金能源, 2024, 43(3): 14-18. doi: 10.3969/j.issn.1001-1617.2024.03.003

    YANG X J, DUAN Y, HE S F, et al. Prediction of slab unit energy consumption in steel rollingheating furnace based on all influencing factors[J]. Energy for Metallurgical Industry, 2024, 43(3): 14-18. doi: 10.3969/j.issn.1001-1617.2024.03.003
    [6] ZHAI N, ZHOU X. Temperature prediction of heating furnace based on deep transfer learning[J]. Sensors, 2020, 20(17): 4676. doi: 10.3390/s20174676
    [7] CHEN Y W, CHAI T Y. Modelling and prediction for steel billet temperature of heating furnace[J]. International Journal of Advanced Mechatronic Systems, 2010, 2(5-6): 342-349.
    [8] ZHOU J X, ZHENG R C, HOU H Y, et al. lmproved pelican algorithm for optimizing LSTM basedtemperature prediction of reheating furnace billets[J]. Foreign Electronic Measurement Technology, 2023, 42(5): 174-179. (周建新, 郑日成, 侯宏瑶, 等. 改进鹈鹕算法优化LSTM的加热炉钢坯温度预测[J]. 国外电子测量技术, 2023, 42(5): 174-179.

    ZHOU J X, ZHENG R C, HOU H Y, et al. lmproved pelican algorithm for optimizing LSTM basedtemperature prediction of reheating furnace billets[J]. Foreign Electronic Measurement Technology, 2023, 42(5): 174-179.
    [9] SUN J, YU M H. Temperature neural network prediction model of billet in rollingheating furnace[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 5. (孙洁, 于孟晗. 轧钢加热炉钢坯温度神经网络预测模型[J]. 国外电子测量技术, 2021, 40(9): 5.

    SUN J, YU M H. Temperature neural network prediction model of billet in rollingheating furnace[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 5.
    [10] YU H, GONG J, WANG G, et al. A hybrid model for billet tapping temperature prediction and optimization in reheating furnace[J]. IEEE Transactions on Industrial Informatics, 2022, 19(8): 8703-8712.
    [11] SHI Q, TANG J, CHU M S. Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1651-1666. doi: 10.1007/s12613-023-2636-3
    [12] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
    [13] RAMRAJ S, UZIR N, SUNIL R, et al. Experimenting XGBoost algorithm for prediction and classification of different datasets[J]. International Journal of Control Theory and Applications, 2016, 9(40): 651-662.
    [14] XIE C L. Wind-induced acceleration prediction of cable-stayed bridges based on LST model[D]. Guang Zhou: Guangzhou University, 2023. (谢诚朗. 基于LSTM模型的斜拉桥风致加速度预测[D]. 广州: 广州大学, 2023.

    XIE C L. Wind-induced acceleration prediction of cable-stayed bridges based on LST model[D]. Guang Zhou: Guangzhou University, 2023.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  18
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-28
  • 录用日期:  2025-08-08
  • 修回日期:  2025-08-08
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回