中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工神经网络驱动的P650无磁钻铤用钢高温流变行为研究

王英虎 程礼梅 王建强 王婀娜 宋令玺 盛振东

王英虎, 程礼梅, 王建强, 王婀娜, 宋令玺, 盛振东. 人工神经网络驱动的P650无磁钻铤用钢高温流变行为研究[J]. 钢铁钒钛, 2025, 46(5): 75-84. doi: 10.7513/j.issn.1004-7638.2025.05.008
引用本文: 王英虎, 程礼梅, 王建强, 王婀娜, 宋令玺, 盛振东. 人工神经网络驱动的P650无磁钻铤用钢高温流变行为研究[J]. 钢铁钒钛, 2025, 46(5): 75-84. doi: 10.7513/j.issn.1004-7638.2025.05.008
WANG Yinghu, CHENG Limei, WANG Jianqiang, WANG E'nuo, SONG Lingxi, SHENG Zhendong. ANN-Driven modeling of high-temperature flow behavior in P650 for nonmagnetic drilling collars[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 75-84. doi: 10.7513/j.issn.1004-7638.2025.05.008
Citation: WANG Yinghu, CHENG Limei, WANG Jianqiang, WANG E'nuo, SONG Lingxi, SHENG Zhendong. ANN-Driven modeling of high-temperature flow behavior in P650 for nonmagnetic drilling collars[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 75-84. doi: 10.7513/j.issn.1004-7638.2025.05.008

人工神经网络驱动的P650无磁钻铤用钢高温流变行为研究

doi: 10.7513/j.issn.1004-7638.2025.05.008
详细信息
    作者简介:

    王英虎,1992年出生,男,河北衡水人,博士研究生,高级工程师,研究方向:先进金属材料及加工技术,E-mail:hihihowareyou@163.com

  • 中图分类号: TG142.7,TP183

ANN-Driven modeling of high-temperature flow behavior in P650 for nonmagnetic drilling collars

  • 摘要: 通过Gleeble-3500热模拟试验机对P650高氮钢进行10001150 ℃、应变速率0.01~10 s−1条件下的高温拉伸试验,获取流变应力-应变曲线。基于试验数据,分别构建应变补偿Arrhenius本构模型与人工神经网络(ANN)模型,并采用平均绝对相对误差、均方根误差和相关系数系统评价模型预测性能。结果表明,ANN模型通过单隐藏层拓扑结构(含17个神经元)实现了温度、应变速率及应变与流变应力的高精度非线性映射。其预测结果与试验值高度吻合(r=0.996,EAARE=4.63%,ERMSE=6.721 MPa),显著优于传统Arrhenius模型(r=0.975,EAARE=7.94%,ERMSE=16.032 MPa)。研究表明人工神经网络能够有效捕捉复杂热变形行为的本构关系特征,为建立高精度流变应力预测模型及材料加工工艺优化提供了改进策略。
  • 图  1  热模拟试验流程示意

    Figure  1.  Schematic illustration of thermal simulation experimental processes

    图  2  神经网络结构示意

    Figure  2.  Schematic diagram of the neural network architecture

    图  3  隐藏层数量与单层神经元数量对人工神经网络性能的影响

    Figure  3.  The influences of the hidden layer number and neuron number in each hidden layer on the performance of ANN

    图  4  P650不同温度和应变速率下的真应力-应变曲线

    Figure  4.  True stress-true stain curves of P650 steel at different temperatures and strain rate

    (a) 0.01 s−1; (b) 0.1 s−1; (c) 1 s−1; (d) 10 s−1

    图  5  各参数线性关系

    Figure  5.  Linear relationships of various parameters

    (a) $ {\text{ln}}\dot \varepsilon $-$ \ln \sigma $;(b) $ {\text{ln}}\dot \varepsilon $-$ \sigma $;(c) $ {\text{ln}}\dot \varepsilon $-$\ln [\sinh (\alpha \sigma )]$;(d) $\ln [\sinh (\alpha \sigma )]$-1/T

    图  6  应变量0.1时ln Z与$\ln [\sinh (\alpha \sigma)]$关系

    Figure  6.  Plot of lnZ and $\ln [\sinh (\alpha \sigma)]$ at strain of 0.1

    图  7  材料常数与真应变关系曲线

    Figure  7.  The relationships between material constants and true strain

    (a) n; (b) ln A; (c) α; (d) ${\text{Q}}$

    图  8  人工神经网络预测输出数据与实测输出数据对比

    (a)训练数据;(b)测试数据

    Figure  8.  Predicted output data from the ANN versus measured output data for the training data and testing data

    图  9  应变补偿Arrhenius模型、ANN模型的实测与预测流变应力对比

    Figure  9.  Comparisons between measured and predicted flow stress by strain-compensated Arrhenius model and ANN model of P650 steel

    (a) 0.01 s−1;(b) 0.1 s−1;(c) 1 s−1;(d) 10 s−1

    图  10  试验值与预测值之间的相关性

    (a)人工神经网络;(b)应变补偿Arrhenius模型

    Figure  10.  Correlation between the measured and predicted stress data

    图  11  模型的相对误差分布

    (a)人工神经网络模型;(b) 应变补偿Arrhenius模型;(c)各模型间的相对误差对比

    Figure  11.  Relative error distribution diagram of the model

    表  1  P650钢的化学成分

    Table  1.   Chemical composition of the P650 steel %

    CMnSiNiCrMoAlPHONSCaMgFe
    0.0320.20.663.9618.021.930.0260.0140.000340.00060.6650.00050.0060.0005Bal.
    下载: 导出CSV

    表  2  α, n, $Q$and lnA的多项式系数

    Table  2.   Polynomial coefficients for α, n, Q and lnA

    StainnlnAα$Q$/(kJ·mol−1
    0.029.0470246.17460.006487542190.911
    0.047.7412641.507920.005855488845.541
    0.066.9552840.949710.005522481427.444
    0.086.2761839.925960.005454470686.347
    0.15.7799240.113590.005525474033.633
    0.125.4015740.466260.005732479360.231
    0.144.9438840.419740.006049479873.334
    0.164.3555637.324390.006641446595.561
    0.183.2441627.871210.008147343149.771
    0.22.9154728.402860.008911348449.722
    下载: 导出CSV
  • [1] ZHANG S X, CUI Y, QU H P, et al. Precipitation mechanical of 0Cr19Mn21Ni2N austenitic stainless steel for non-magnetic drill collar during isothermal aging at 800 ℃[J]. Heat Treatment of Metals, 2016, 41(9): 52-56. (张世霄, 崔岩, 屈华鹏, 等. 无磁钻铤用0Cr19Mn21Ni2N奥氏体不锈800 ℃等温时效析出机制[J]. 金属热处理, 2016, 41(9): 52-56.

    ZHANG S X, CUI Y, QU H P, et al. Precipitation mechanical of 0Cr19Mn21Ni2N austenitic stainless steel for non-magnetic drill collar during isothermal aging at 800 ℃[J]. Heat Treatment of Metals, 2016, 41(9): 52-56.
    [2] CORDEA J N, SHETH H V, JASPER J C. Development of an improved austenitic drilling collar alloy[J]. Material Performance, 1987(23): 50-54.
    [3] ZHANG S X. Research on processing technology of high nitrogen austenitic stainless steels for offshore oil gas drilling application[D]. Tangshan: North China University of Science and Technology, 2016. (张世霄. 海洋油气钻采高氮奥氏体不锈钢加工工艺研究[D]. 唐山: 华北理工大学, 2016.

    ZHANG S X. Research on processing technology of high nitrogen austenitic stainless steels for offshore oil gas drilling application[D]. Tangshan: North China University of Science and Technology, 2016.
    [4] AO Y, ZHOU C D. Thermal deformation behavior of P550 austenitic stainless steel[J]. Shanghai Metals, 2016, 38(5): 22-26. (敖影, 周灿栋. 0Cr19Mn21Ni2N奥氏体不锈钢的热变形行为研究[J]. 上海金属, 2016, 38(5): 22-26. doi: 10.3969/j.issn.1001-7208.2016.05.005

    AO Y, ZHOU C D. Thermal deformation behavior of P550 austenitic stainless steel[J]. Shanghai Metals, 2016, 38(5): 22-26. doi: 10.3969/j.issn.1001-7208.2016.05.005
    [5] QU H P, LANG Y P, CHEN H T. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14-17. (屈华鹏, 郎宇平, 陈海涛. 无磁钻铤用高氮不锈钢的研究和发展[J]. 热加工工艺, 2014, 43(24): 14-17.

    QU H P, LANG Y P, CHEN H T. Research and development on high nitrogen stainless steels used for non-magnetic drilling collar[J]. Hot Working Technology, 2014, 43(24): 14-17.
    [6] LÜ S L, LUO F Q, ZHOU J, et al. Fracture reason analysis on drill collar[J]. Physical Testing and Chemical Analysis, 2009, 45(5): 309-311. (吕栓录, 骆发前, 周杰, 等. 钻铤断裂原因分析[J]. 理化检验, 2009, 45(5): 309-311.

    LÜ S L, LUO F Q, ZHOU J, et al. Fracture reason analysis on drill collar[J]. Physical Testing and Chemical Analysis, 2009, 45(5): 309-311.
    [7] LÜ S L, ZHANG H, XU F, et al. Gause analysis of oil drill collar fracture[J]. Material for Mechanical Engineering, 2010, 36(6): 80-82. (吕栓录, 张宏, 许峰, 等. 石油钻铤断裂原因分析[J]. 机械工程材料, 2010, 36(6): 80-82.

    LÜ S L, ZHANG H, XU F, et al. Gause analysis of oil drill collar fracture[J]. Material for Mechanical Engineering, 2010, 36(6): 80-82.
    [8] SHI F, CUI W F, WANG L J, et al. Advance in the research of high-nitrogen austenitic stainless steels[J]. Shanghai Metals, 2006, 28(5): 45-50. (石锋, 崔文芳, 王立军, 等. 高氮奥氏体不锈钢研究进展[J]. 上海金属, 2006, 28(5): 45-50. doi: 10.3969/j.issn.1001-7208.2006.05.011

    SHI F, CUI W F, WANG L J, et al. Advance in the research of high-nitrogen austenitic stainless steels[J]. Shanghai Metals, 2006, 28(5): 45-50. doi: 10.3969/j.issn.1001-7208.2006.05.011
    [9] WANG Y H, ZHENG H B, SONG L X, et al. High temperature plastic deformation behavior of 0Cr19Mn21Ni2N high nitrogen steel for nonmagnetic drilling collar[J]. Heat Treatment of Metals, 2022, 47(1): 113-119. (王英虎, 郑淮北, 宋令玺, 等. 无磁钻铤用0Cr19Mn21Ni2N高氮钢的高温塑性变形行为[J]. 金属热处理, 2022, 47(1): 113-119.

    WANG Y H, ZHENG H B, SONG L X, et al. High temperature plastic deformation behavior of 0Cr19Mn21Ni2N high nitrogen steel for nonmagnetic drilling collar[J]. Heat Treatment of Metals, 2022, 47(1): 113-119.
    [10] LI Y F, WANG Z H, ZHANG L Y, et al. Arrhenius-type constitutive model and dynamic recrystallization behavior of V-5Cr-5Ti alloy during hot compression[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1889-1900. doi: 10.1016/S1003-6326(15)63796-7
    [11] GAO X J, LIU X, LUO J, et al. Arrhenius constitutive model for hot deformation of DP1180 steel[J]. Journal of Netshape Forming Engineering, 2024, 16(11): 108-116. (高兴健, 刘鑫, 罗健, 等. DP1180 钢的热变形Arrhenius本构模型[J]. 精密成形工程, 2024, 16(11): 108-116.

    GAO X J, LIU X, LUO J, et al. Arrhenius constitutive model for hot deformation of DP1180 steel[J]. Journal of Netshape Forming Engineering, 2024, 16(11): 108-116.
    [12] XU L W, LI H B, JIANG Z H, et al. Hot deformation behavior of P550 steels for nonmagnetic drilling collars[J]. Steel Research International, 2020, 91(8): 1-11.
    [13] GUO W. Study on thermal deformation behavior and microstructure evolution of P550 high nitrogen austenitic stainless steel[J]. Materials Research Express, 2023, 10(6).
    [14] REDDY N S, LEE Y H, KIM J H, et al. High temperature deformation behavior of Ti-6Al-4V alloy with and equiaxed microstructure: a neural networks analysis[J]. Met Mater Int, 2008, 14(2): 213-221. doi: 10.3365/met.mat.2008.04.213
    [15] AHMADI H, ASHTIANI H R R, HEIDARI M, A comparative study of phenomenological, physically-based and artificial neural network models to predict the hot flow behavior of API 5CT-L80 steel[J]. Materials Today Communications, 2020, 25, 101528.
    [16] JI G L, LI F G, LI Q H, et al. Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network[J]. Computational Materials Science, 2010, 48(7): 626-632.
    [17] YANG J C, GAO F B, REN J L. Research on plastic deformation behavior of 00Cr17Mn6Ni5N at high temperature[J]. Hot Working Technology, 2014, 43(16): 102-104. (杨吉春, 高福彬, 任金亮. 00Cr17Mn6Ni5N的高温塑性变形行为研究[J]. 热加工工艺, 2014, 43(16): 102-104.

    YANG J C, GAO F B, REN J L. Research on plastic deformation behavior of 00Cr17Mn6Ni5N at high temperature[J]. Hot Working Technology, 2014, 43(16): 102-104.
    [18] YU X P, DONG H B. Numerical simulation of austenite recrystallization process in 40Cr steel[J]. Special Casting & Nonferrous Alloys, 2015, 35(1): 26-29. (余新平, 董洪波. 40Cr钢奥氏体动态再结晶过程数值模拟[J]. 特种铸造及有色合金, 2015, 35(1): 26-29.

    YU X P, DONG H B. Numerical simulation of austenite recrystallization process in 40Cr steel[J]. Special Casting & Nonferrous Alloys, 2015, 35(1): 26-29.
    [19] WEI H L, PAN H B, ZHOU H W. Physical and apparent arrhenius constitutive models of a Nb–Ti microalloyed C–Mn–Al high strength steel: A comparative study[J]. Transactions of the Indian Institute of Metals, 2022, 75(2): 327-336. doi: 10.1007/s12666-021-02414-3
    [20] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. doi: 10.1063/1.1707363
    [21] LONG S, XIA Y, WANG P, et al. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation[J]. Journal of Alloys and Compounds, 2019, 796(5): 65-76.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  8
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 录用日期:  2025-05-15
  • 修回日期:  2025-05-07
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回