中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器学习辅助的三周期极小曲面结构逆设计研究进展

尹兴鹏 李俊豪 唐新桢 李洲

尹兴鹏, 李俊豪, 唐新桢, 李洲. 机器学习辅助的三周期极小曲面结构逆设计研究进展[J]. 钢铁钒钛, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014
引用本文: 尹兴鹏, 李俊豪, 唐新桢, 李洲. 机器学习辅助的三周期极小曲面结构逆设计研究进展[J]. 钢铁钒钛, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014
YIN Xingpeng, LI Junhao, TANG Xinzhen, LI Zhou. Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014
Citation: YIN Xingpeng, LI Junhao, TANG Xinzhen, LI Zhou. Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 133-144. doi: 10.7513/j.issn.1004-7638.2025.05.014

机器学习辅助的三周期极小曲面结构逆设计研究进展

doi: 10.7513/j.issn.1004-7638.2025.05.014
基金项目: 湖南省优秀青年基金项目(2023JJ20069)。
详细信息
    作者简介:

    尹兴鹏,1987年7月出生,男,山东潍坊人,大学本科,工程师。研究方向:高性能金属材料应用,345019320@qq.com

    通讯作者:

    李洲,1987年出生,男,湖南岳阳人,博士,副教授,从事先进结构与复合材料研究工作,E-mail:221029@csu.edu.cn

  • 中图分类号: TB383,TP181

Research progress on machine learning-assisted inverse design of triply periodic minimal surface structures

  • 摘要: 三周期极小曲面(Triply periodic minimal surface, TPMS)结构是一类由数学隐式函数生成的仿生多孔结构,具有连续光滑、自支撑性强、比强度高和能量吸收性能优异等特点,适用于钛合金等轻质高性能金属材料的结构设计,广泛应用于航空航天和先进制造领域。系统综述了TPMS金属结构设计方法与力学性能研究进展,重点梳理了TPMS结构的几何建模算法、梯度与组合类型的构建策略。进一步总结了机器学习方法在TPMS金属结构设计中的应用现状,涵盖了正向机器学习的结构力学性能预测与逆向机器学习的目标导向TPMS金属结构设计方法。最后,分析了当前复杂TPMS金属结构逆向设计在高效映射、数据集构建等方面存在的不足,指出未来亟需通过生成式人工智能(Generative artificial intelligence,Generative AI)与逆向建模的深度融合,以推动TPMS金属结构逆向设计的工程化应用。
  • 图  1  三周期极小曲面(TPMS)结构的应用[17-34]

    Figure  1.  Applications of triply periodic minimal surface (TPMS) structure[17-34]

    图  2  复杂TPMS结构的建模算法

    (a) 基于区域的TPMS建模算法[40];(b) 基于Voronoi的建模算法[42-44]

    Figure  2.  Modeling algorithms for complex TPMS

    图  3  梯度与组合TPMS结构建模研究

    (a) 梯度TPMS建模研究[46,48,52];(b) 组合TPMS建模研究[53-57]

    Figure  3.  Gradient and combined TPMS structure modeling

    图  4  结构参数、梯度类型与组合方式等对结构性能的影响

    (a) 不同梯度对结构性能影响[58-59];(b) 不同参数对结构性能影响[60-61];(c) 不同组合方式对结构性能影响[62-63]

    Figure  4.  Influence of structural parameters, gradient types and combinations on performance

    图  5  机器学习辅助的TPMS结构性能预测与参数设计

    (a) 正向机器学习研究[66, 67];(b) 逆向机器学习研究[68, 70]

    Figure  5.  Machine learning-assisted TPMS structural performance prediction and parameter design

  • [1] FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. doi: 10.1088/2631-7990/ac5be6
    [2] ZHANG J, XIE S C, JING K K, et al. Study on isotropic design of triply periodic minimal surface structures under an elastic modulus compensation mechanism[J]. Composite Structures, 2024, 342: 118266. doi: 10.1016/j.compstruct.2024.118266
    [3] PENG C X, FOX K, QIAN M, et al. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling[J]. Thin-Walled Structures, 2021, 161: 107471. doi: 10.1016/j.tws.2021.107471
    [4] CHEN R G, ZHANG W J, JIA Y F, et al. Ultra-stiff and quasi-elastic-isotropic triply periodic minimal surface structures designed by deep learning[J]. Materials & Design, 2024, 244: 113107.
    [5] JIN J L, WU S Q, YANG L, et al. Ni–Ti multicell interlacing Gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion[J]. International Journal of Machine Tools and Manufacture, 2024, 195: 104099. doi: 10.1016/j.ijmachtools.2023.104099
    [6] SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
    [7] SHI J P, ZHU L Y, LI L, et al. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering[J]. Scientific Reports, 2018, 8(1): 7395. doi: 10.1038/s41598-018-25750-9
    [8] HESSELMANN F, HALWES M, BONGARTZ P, et al. TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution[J]. Scientific Reports, 2022, 12(1): 7160. doi: 10.1038/s41598-022-11175-y
    [9] TRIPATHI Y, SHUKLA M, BHATT A D. Implicit-function-based design and additive manufacturing of triply periodic minimal surfaces scaffolds for bone tissue engineering[J]. Journal of Materials Engineering and Performance, 2019, 28(12): 7445-7451. doi: 10.1007/s11665-019-04457-6
    [10] ZOU S J, MU Y R, PAN B C, et al. Mechanical and biological properties of enhanced porous scaffolds based on triply periodic minimal surfaces[J]. Materials & Design, 2022, 219: 110803.
    [11] REN F X, ZHANG C D, LIAO W H, et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices[J]. Materials & Design, 2021, 210: 110062.
    [12] YETIK O, ENGÜN S, KOK B, et al. Thermal management system of batteries using AlN reinforced TPMS-PCM composite material[J]. Energy, 2024, 313: 134137. doi: 10.1016/j.energy.2024.134137
    [13] CUI Y L, GAIN A K, ZHANG L C, et al. Manufacture and property characterization of interconnected pore-gradient TPMS materials[J]. Materials Science and Engineering: A, 2024, 892: 146100. doi: 10.1016/j.msea.2024.146100
    [14] QIU N, WAN Y H, SHEN Y J, et al. Experimental and numerical studies on mechanical properties of TPMS structures[J]. International Journal of Mechanical Sciences, 2024, 261: 108657. doi: 10.1016/j.ijmecsci.2023.108657
    [15] WANG Y Z, WU C Q, JI W J, et al. Machine learning-assisted precision inverse design research of ternary cathode materials: A new paradigm for material design[J]. Journal of Colloid and Interface Science, 2025, 680: 505-517. doi: 10.1016/j.jcis.2024.11.104
    [16] MI X X, TIAN L J, TANG A T, et al. A reverse design model for high-performance and low-cost magnesium alloys by machine learning[J]. Computational Materials Science, 2022, 201: 110881. doi: 10.1016/j.commatsci.2021.110881
    [17] SONG Y, SUN Y W, ZOU Z W, et al. Systematic study of the thermal and hydraulic characteristics of a heat exchanger based on the Schwartz-D structure for aviation application[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107611. doi: 10.1016/j.icheatmasstransfer.2024.107611
    [18] FENG J W, FU J Z, SHANG C, et al. Sandwich panel design and performance optimization based on triply periodic minimal surfaces[J]. Computer-Aided Design, 2019, 115: 307-322. doi: 10.1016/j.cad.2019.06.007
    [19] HUANG W S, NING H Y, LI N, et al. Thermal-hydraulic performance of TPMS-based regenerators in combined cycle aero-engine[J]. Applied Thermal Engineering, 2024, 250: 123510. doi: 10.1016/j.applthermaleng.2024.123510
    [20] ZHANG Y, YAN Z J, SHEN M W, et al. Study on the thermal control performance of lightweight minimal surface lattice structures for aerospace applications[J]. Applied Thermal Engineering, 2025, 261: 125110. doi: 10.1016/j.applthermaleng.2024.125110
    [21] ZHANG T, ZHANG K F, LIU F, et al. Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study[J]. Applied Energy, 2024, 358: 122630. doi: 10.1016/j.apenergy.2024.122630
    [22] NOVAK N, BOROVINŠEK M, AL-KETAN O, et al. Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures[J]. Composite Structures, 2022, 300: 116174. doi: 10.1016/j.compstruct.2022.116174
    [23] ZHANG Y, CHEN Y G, LI J X, et al. Protective performance of hybrid triply periodic minimal surface lattice structure[J]. Thin-Walled Structures, 2024, 194: 111288. doi: 10.1016/j.tws.2023.111288
    [24] NOVAK N, AL-KETAN O, KRSTULOVIĆ-OPARA L, et al. Quasi-static and dynamic compressive behaviour of sheet TPMS cellular structures[J]. Composite Structures, 2021, 266: 113801. doi: 10.1016/j.compstruct.2021.113801
    [25] PHUNG-VAN P, HUNG P T, THAI C H. Small-dependent nonlinear analysis of functionally graded triply periodic minimal surface nanoplates[J]. Composite Structures, 2024, 335: 117986. doi: 10.1016/j.compstruct.2024.117986
    [26] YAN X N. Research on design and impact protection performance of metal/ceramic heterogeneous lattice structure[D]. Xuzhou: China University of Mining and Technology, 2021. (严效男. 金属/陶瓷异质点阵结构设计与冲击防护性能研究[D]. 徐州: 中国矿业大学, 2021.

    YAN X N. Research on design and impact protection performance of metal/ceramic heterogeneous lattice structure[D]. Xuzhou: China University of Mining and Technology, 2021.
    [27] CHEN Y Z, WANG C H, HSIEH T Y, et al. An efficient parameterized neural network enhanced multiscale finite element modeling for triply periodic minimal surface meta-structures and its applications for femur[J]. Journal of Materials Research and Technology, 2024, 30: 6176-6194. doi: 10.1016/j.jmrt.2024.05.023
    [28] SONG K L, WANG Z H, LAN J, et al. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115: 104222. doi: 10.1016/j.jmbbm.2020.104222
    [29] WANG J E, SCHUTZEICHEL M, PLAUMANN B, et al. Multidisciplinary design optimisation of lattice-based battery housing for electric vehicles[J]. Scientific Reports, 2024, 14(1): 12265. doi: 10.1038/s41598-024-60124-4
    [30] NOVAK N, KYTYR D, RADA V, et al. Compression behaviour of TPMS-filled stainless steel tubes[J]. Materials Science and Engineering: A, 2022, 852: 143680. doi: 10.1016/j.msea.2022.143680
    [31] PANESAR A, ABDI M, HICKMAN D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing[J]. Additive Manufacturing, 2018, 19: 81-94. doi: 10.1016/j.addma.2017.11.008
    [32] JIANG W M, LIAO W H, LIU T T, et al. A voxel-based method of multiscale mechanical property optimization for the design of graded TPMS structures[J]. Materials & Design, 2021, 204: 109655.
    [33] WANG H T. Research on the crashworthiness of automobile front longitudinal beam based on periodic minimal surface structure reinforcement[D]. Dalian: Dalian University of Technology, 2019. (王赫庭. 基于周期极小曲面结构加强的汽车前纵梁防撞性研究[D]. 大连: 大连理工大学, 2019.

    WANG H T. Research on the crashworthiness of automobile front longitudinal beam based on periodic minimal surface structure reinforcement[D]. Dalian: Dalian University of Technology, 2019.
    [34] ZHENG X J. Crashworthiness optimization design of a novel bionic hierarchical porous structure[D]. Changsha: Hunan University, 2020. (郑贤君. 新型仿生层级多孔结构的耐撞性优化设计[D]. 长沙: 湖南大学, 2020.

    ZHENG X J. Crashworthiness optimization design of a novel bionic hierarchical porous structure[D]. Changsha: Hunan University, 2020.
    [35] SEEHANAM S, CHANCHAREON W, PROMOPPATUM P. Assessing the effect of manufacturing defects and non-Newtonian blood model on flow behaviors of additively manufactured Gyroid TPMS structures[J]. Heliyon, 2023, 9(5): e15711. doi: 10.1016/j.heliyon.2023.e15711
    [36] KIM D Y, KIM H S, KAMATH S S, et al. TPMS-based auxetic structure for high-performance airless tires with variable stiffness depending on deformation[J]. Scientific Reports, 2024, 14(1): 11419. doi: 10.1038/s41598-024-62101-3
    [37] GIDE K M, BAGHERI Z S. Mechanical behavior and material modeling of fused filament fabricated PEEK based on TPMS lattices: a comparative study[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(5): 2765-2780.
    [38] TYAGI S A, MANJAIAH M. Fine porous stainless steel TPMS cellular structures: Printability and post-processing evaluation[J]. Journal of The Institution of Engineers (India): Series D, 2024, 105(3): 2045-2052. doi: 10.1007/s40033-023-00598-0
    [39] YANG H. Research on modeling methods of porous structures[D]. Nanjing: Southeast University, 2017. (杨辉. 多孔结构的建模方法研究[D]. 南京: 东南大学, 2017.

    YANG H. Research on modeling methods of porous structures[D]. Nanjing: Southeast University, 2017.
    [40] KARAKOÇ A. RegionTPMS—Region based triply periodic minimal surfaces (TPMS) for 3-D printed multiphase bone scaffolds with exact porosity values[J]. SoftwareX, 2021, 16: 100835. doi: 10.1016/j.softx.2021.100835
    [41] LEI H Y. Research on parametric modeling for active design of porous functional structures[D]. Guangzhou: South China University of Technology, 2021. (雷鸿源. 面向多孔功能结构主动设计的参数化建模研究[D]. 广州: 华南理工大学, 2021.

    LEI H Y. Research on parametric modeling for active design of porous functional structures[D]. Guangzhou: South China University of Technology, 2021.
    [42] WANG G J, SHEN L D, ZHAO J F, et al. Design and compressive behavior of controllable irregular porous scaffolds: Based on Voronoi-Tessellation and for additive manufacturing[J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 719-727.
    [43] SOTOMAYOR O E, TIPPUR H V. Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams[J]. International Journal of Solids and Structures, 2014, 51(21): 3776-3786.
    [44] GÓMEZ S, VLAD M D, LÓPEZ J, et al. Design and properties of 3D scaffolds for bone tissue engineering[J]. Acta Biomaterialia, 2016, 42: 341-350. doi: 10.1016/j.actbio.2016.06.032
    [45] SHI X, LIAO W H, LIU T T, et al. Design optimization of multimorphology surface-based lattice structures with density gradients[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(7): 2013-2028.
    [46] FENG Y X, HUANG T, GONG Y H, et al. Stiffness optimization design for TPMS architected cellular materials[J]. Materials & Design, 2022, 222: 111078.
    [47] OZDEMIR M, SIMSEK U, KIZILTAS G, et al. A novel design framework for generating functionally graded multi-morphology lattices via hybrid optimization and blending methods[J]. Additive Manufacturing, 2023, 70: 103560. doi: 10.1016/j.addma.2023.103560
    [48] PARLAYAN O, OZDEMIR M, GAYIR C E, et al. A new sensitivity-based mapping scheme for topology optimization of graded TPMS designs[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(7): 3197-3220.
    [49] GÜNTHER F, PILZ S, HIRSCH F, et al. Shape optimization of additively manufactured lattices based on triply periodic minimal surfaces[J]. Additive Manufacturing, 2023, 73: 103659. doi: 10.1016/j.addma.2023.103659
    [50] LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(071402).
    [51] NGUYEN-XUAN H, TRAN K Q, THAI C H, et al. Modelling of functionally graded triply periodic minimal surface (FG-TPMS) plates[J]. Composite Structures, 2023, 315: 116981. doi: 10.1016/j.compstruct.2023.116981
    [52] QIU N, ZHANG J Z, YUAN F Q, et al. Mechanical performance of triply periodic minimal surface structures with a novel hybrid gradient fabricated by selective laser melting[J]. Engineering Structures, 2022, 263: 114377. doi: 10.1016/j.engstruct.2022.114377
    [53] LI K, LIAO R B, ZHENG Q C, et al. Design exploration of staggered hybrid minimal surface magnesium alloy bone scaffolds[J]. International Journal of Mechanical Sciences, 2024, 281: 109566. doi: 10.1016/j.ijmecsci.2024.109566
    [54] CHEN Z Y, WU B S, CHEN X, et al. Energy absorption and impact resistance of hybrid triply periodic minimal surface (TPMS) sheet-based structures[J]. Materials Today Communications, 2023, 37: 107352. doi: 10.1016/j.mtcomm.2023.107352
    [55] YE H L, TIAN F W, HE W L, et al. Mechanical and thermal property analysis and optimization design of hybrid lattice structure based on triply periodic minimal surfaces[J]. Thin-Walled Structures, 2024, 203: 112203. doi: 10.1016/j.tws.2024.112203
    [56] NOVAK N, AL-KETAN O, BOROVINŠEK M, et al. Development of novel hybrid TPMS cellular lattices and their mechanical characterisation[J]. Journal of Materials Research and Technology, 2021, 15: 1318-1329. doi: 10.1016/j.jmrt.2021.08.092
    [57] WANG H, TAN D W, LIU Z P, et al. On crashworthiness of novel porous structure based on composite TPMS structures[J]. Engineering Structures, 2022, 252: 113640. doi: 10.1016/j.engstruct.2021.113640
    [58] ZHANG X Y. Research on SLM-formed sandwich structure based on three-periodic minimal surface[D]. Chongqing: Chongqing University, 2019. (张馨月. 基于三周期极小曲面的SLM成形夹芯结构研究[D]. 重庆: 重庆大学, 2019.

    ZHANG X Y. Research on SLM-formed sandwich structure based on three-periodic minimal surface[D]. Chongqing: Chongqing University, 2019.
    [59] ZHONG M T. Research on gradient TPMS structure design and mechanical behavior of 316L stainless steel and NiTi shape memory alloy[D]. Guangzhou: Guangzhou University, 2022. (钟敏婷. 316L不锈钢和NiTi形状记忆合金的梯度TPMS结构设计及力学行为研究[D]. 广州: 广州大学, 2022.

    ZHONG M T. Research on gradient TPMS structure design and mechanical behavior of 316L stainless steel and NiTi shape memory alloy[D]. Guangzhou: Guangzhou University, 2022.
    [60] GUO W. Research on energy absorption and application of three-dimensional curved lattice structure[D]. Changsha: Hunan University, 2020. (郭文. 三维曲面点阵结构吸能及应用研究[D]. 长沙: 湖南大学, 2020.

    GUO W. Research on energy absorption and application of three-dimensional curved lattice structure[D]. Changsha: Hunan University, 2020.
    [61] SUN Q D, SUN J, GUO K, et al. Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures[J]. Mechanics of Materials, 2022, 166: 104241. doi: 10.1016/j.mechmat.2022.104241
    [62] FENG G Z, LI S, XIAO L J, et al. Mechanical properties and deformation behavior of functionally graded TPMS structures under static and dynamic loading[J]. International Journal of Impact Engineering, 2023, 176: 104554. doi: 10.1016/j.ijimpeng.2023.104554
    [63] ZHANG J, XIE S C, LI T, et al. A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices[J]. Thin-Walled Structures, 2023, 190: 110989. doi: 10.1016/j.tws.2023.110989
    [64] LI C T. Research on morphology optimization and mechanical properties of mechanical metamaterials based on deep learning[D]. Nanjing: Southeast University, 2021. (李长通. 基于深度学习的力学超材料形态优化及力学性能研究[D]. 南京: 东南大学, 2021.

    LI C T. Research on morphology optimization and mechanical properties of mechanical metamaterials based on deep learning[D]. Nanjing: Southeast University, 2021.
    [65] ZHANG J W, ZHAO J X, RONG Q G, et al. Machine learning guided prediction of mechanical properties of TPMS structures based on finite element simulation for biomedical titanium[J]. Materials Technology, 2022, 37(1): 1-8.
    [66] BARBIAN K P, HIRSCHWALD L T, LINKHORST J, et al. Flow and mass transfer prediction in anisotropic TPMS-structures as extracorporeal oxygenator membranes using reduced order modeling[J]. Journal of Membrane Science, 2024, 690: 122160. doi: 10.1016/j.memsci.2023.122160
    [67] HAN S Y, WANG Z, E-MELIGY M, et al. Nonlinear dynamic analysis of the FG-TPMS double-curved panels: Introducing SVM-DNN-RF algorithm to predict nonlinear dynamic information[J]. Aerospace Science and Technology, 2024: 109785.
    [68] ZHANG H Q. Research on mechanical performance design system based on 3D printing and deep learning[D]. Beijing: Tsinghua University, 2019. (张汉青. 基于3D打印和深度学习的力学性能设计体系研究[D]. 北京: 清华大学, 2019.

    ZHANG H Q. Research on mechanical performance design system based on 3D printing and deep learning[D]. Beijing: Tsinghua University, 2019.
    [69] WANG Y Z, ZENG Q L, WANG J Z, et al. Inverse design of shell-based mechanical metamaterial with customized loading curves based on machine learning and genetic algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115571. doi: 10.1016/j.cma.2022.115571
    [70] HU B, WANG Z J, DU C, et al. Multi-objective Bayesian optimization accelerated design of TPMS structures[J]. International Journal of Mechanical Sciences, 2023, 244: 108085. doi: 10.1016/j.ijmecsci.2022.108085
    [71] CHALLAPALLI A, PATEL D, LI G. Inverse machine learning framework for optimizing lightweight metamaterials[J]. Materials & Design, 2021, 208: 109937.
    [72] LI Z, LI J H, TIAN J H, et al. Performance-based inverse structural design of complex gradient triply periodic minimal surface structures based on a deep learning approach[J]. Materials Today Communications, 2024, 40: 109424. doi: 10.1016/j.mtcomm.2024.109424
    [73] LI Z, LI J H, TIAN J H, et al. Inverse design of cellular structures with the geometry of triply periodic minimal surfaces using generative artificial intelligence algorithms[J]. Engineering Structures, 2024, 321: 118988. doi: 10.1016/j.engstruct.2024.118988
    [74] LI Z, LI J H, TIAN J H, et al. Design of nonlinear gradient sheet-based TPMS-lattice using artificial neural networks[J]. Journal of Materials Research and Technology, 2024, 33: 223-234. doi: 10.1016/j.jmrt.2024.09.051
  • 加载中
图(5)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  12
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 录用日期:  2025-07-07
  • 修回日期:  2025-07-02
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回