中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠化钒渣水浸液原位制备氟磷酸钒钠及其性能研究

储呈宇 温婧 姜涛 杨金超

储呈宇, 温婧, 姜涛, 杨金超. 钠化钒渣水浸液原位制备氟磷酸钒钠及其性能研究[J]. 钢铁钒钛, 2025, 46(5): 154-162. doi: 10.7513/j.issn.1004-7638.2025.05.016
引用本文: 储呈宇, 温婧, 姜涛, 杨金超. 钠化钒渣水浸液原位制备氟磷酸钒钠及其性能研究[J]. 钢铁钒钛, 2025, 46(5): 154-162. doi: 10.7513/j.issn.1004-7638.2025.05.016
CHU Chengyu, WEN Jing, JIANG Tao, YANG Jinchao. In-situ preparation of sodium vanadium fluorophosphate from sodiumized vanadium slag leaching solution and its performance study[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 154-162. doi: 10.7513/j.issn.1004-7638.2025.05.016
Citation: CHU Chengyu, WEN Jing, JIANG Tao, YANG Jinchao. In-situ preparation of sodium vanadium fluorophosphate from sodiumized vanadium slag leaching solution and its performance study[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 154-162. doi: 10.7513/j.issn.1004-7638.2025.05.016

钠化钒渣水浸液原位制备氟磷酸钒钠及其性能研究

doi: 10.7513/j.issn.1004-7638.2025.05.016
基金项目: 国家自然科学基金资助项目(52374300,52174277,52204309);中央高校基本科研业务费(N2425026)。
详细信息
    作者简介:

    储呈宇,2000年出生,男,江苏南通人,硕士研究生,研究方向:钠离子电池正极材料氟磷酸钒钠的合成与改性,E-mail:1278836880@qq.com

    通讯作者:

    姜涛,1973年出生,男,辽宁本溪人,教授,研究方向:共伴生资源综合利用理论与技术、冶金工艺理论及新工艺等,E-mail:jiangt@smm.neu.edu.cn

  • 中图分类号: TF841.3,TM911

In-situ preparation of sodium vanadium fluorophosphate from sodiumized vanadium slag leaching solution and its performance study

  • 摘要: 针对传统氟磷酸钒钠(NVOPF)制备过程中使用钒源的高成本困境,提出了一种新型溶剂热合成工艺,利用钠化钒渣水浸液替代高纯钒源,成功实现了从冶金副产品到电池材料的直接转化。此外,探讨了还原剂柠檬酸 (C6H8O7) 用量、溶液pH值和合成温度对钒转化率及材料性能的影响。试验结果表明,随着还原剂用量、pH值和温度的增加,钒转化率呈现先升后降的趋势。在溶液pH值为6、柠檬酸与钒摩尔比为1.5、溶剂热温度为180 ℃条件下,合成的NVOPF材料呈现规则的立方块状结构,钒为正四价 (V4+),在0.2C倍率下的首次放电容量为68 mAh/g,表现出良好的结构稳定性,第三圈库伦效率为96%。该材料的高倍率性能和实际容量与理论值之间仍存在一定差距,主要受浸出液杂质的影响。此项研究为钒渣的高附加值利用及低成本钠离子电池正极材料的制备提供了新的解决思路。
  • 图  1  NVOPF的制备流程

    Figure  1.  Preparation flowchart of NVOPF

    图  2  不同柠檬酸与钒摩尔比合成NVOPF材料的钒转化率曲线及 XRD 图谱

    (a) 钒转化率曲线;(b) XRD图

    Figure  2.  Vanadium conversion rate curves and XRD patterns of NVOPF materials synthesized with different molar ratios of citric acid to vanadium

    图  3  不同n(C6H8O7)/n(V)条件下制备NVOPF材料的SEM图

    Figure  3.  SEM images of the NVOPF material synthesized with different citric acid to vanadium molar ratios

    (a) 0.5; (b) 1; (c) 1.5; (d) 2

    图  4  不同pH合成NVOPF材料的钒转化率曲线及 XRD 图谱

    (a) 钒转化率曲线; (b) XRD图

    Figure  4.  Vanadium conversion rate curves and XRD patterns of NVOPF materials synthesized with different pH

    图  5  不同pH值条件下制备NVOPF材料的SEM图

    (a) pH=5;(b) pH=6;(c) pH=7;(d) p =8;(e) pH=9;(f) pH=6时的EDS能谱

    Figure  5.  SEM images of NVOPF materials synthesized under different pH conditions

    图  6  不同溶剂热温度合成NVOPF材料的钒转化率曲线及 XRD 图谱

    (a) 钒转化率曲线;(b) XRD图

    Figure  6.  Vanadium conversion rate curves and XRD patterns of NVOPF materials synthesized with different hydrothermal temperatures

    图  7  不同溶剂热温度条件下制备NVOPF材料的SEM图

    Figure  7.  SEM images of the NVOPF material synthesized with different hydrothermal temperatures

    (a) 140 ℃;(b) 160 ℃;(c) 180 ℃;(d) 200 ℃

    图  8  NVOPF材料的XPS检测

    (a)NVOPF材料的XPS全谱;(b)V 2p的精细光谱;(c)C 1s的精细光谱

    Figure  8.  XPS analysis of NVOPF materials

    图  9  NVOPF材料的电化学检测

    (a) 0.2C电流密度下的前三圈充放电曲线;(b) 0.2C、0.5C、1C及5C电流密度下的倍率性能图;(c) 0.2C电流密度下的循环性能图

    Figure  9.  Electrochemical characterization of NVOPF materials

    表  1  含钒浸出液中主要离子的浓度

    Table  1.   Concentration of main ions in vanadium leaching solution g/L

    V5+Na+Si2+Ca2+Cr3+
    15.0813.850.570.270.30
    下载: 导出CSV

    表  2  NVOPF产物纯度及其杂质含量

    Table  2.   Purity of NVOPF products and content of impurities %

    NVOPFCr2O3CaOSiO2Bal.
    99.500.240.050.100.11
    下载: 导出CSV
  • [1] LEE J C, KURNIAWAN, KIM E Y, et al. A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production[J]. Journal of Materials Research and Technology, 2021, 12: 343-364. doi: 10.1016/j.jmrt.2021.02.065
    [2] GUO Y, LI H Y, SHEN S, et al. Recovery of vanadium from vanadium slag with high phosphorus content via recyclable microemulsion extraction[J]. Hydrometallurgy, 2020, 198: 105509. doi: 10.1016/j.hydromet.2020.105509
    [3] WEN J, JIANG T, XU Y, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043
    [4] ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177. doi: 10.1016/j.cossms.2012.04.002
    [5] LENG M, BI J, et al. Superior electrochemical performance of O3-type NaNi0.5-xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals[J]. Journal of Alloys and Compounds, 2020, 816: 152581. doi: 10.1016/j.jallcom.2019.152581
    [6] ZHENG L, ZHANG D, et al. Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material[J]. Applied Materials Today, 2021, 23: 101032. doi: 10.1016/j.apmt.2021.101032
    [7] HUANG X, ZHANG K, LIANG F, et al. Optimized solvothermal synthesis of LiFePO4 cathode material for enhanced high-rate and low temperature electrochemical performances[J]. Electrochimica Acta, 2017, 258: 1149-1159. doi: 10.1016/j.electacta.2017.11.167
    [8] JING Q, ZHANG J, YANG C, et al. A novel and practical hydrothermal method for synthesizing LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Ceramics International, 2020, 46(12): 20020-20026. doi: 10.1016/j.ceramint.2020.05.073
    [9] GOVER R, BRYAN A, BURNS P, et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3[J]. Solid State Ionics, 2006, 177(17-18): 1495-1500. doi: 10.1016/j.ssi.2006.07.028
    [10] LI Z Y, TANG T, WANG Z H, et al. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 19-27. (李智宇, 汤婷, 王正豪, 等. 从提钒尾液制备磷酸锰铁锂正极材料的研究[J]. 钢铁钒钛, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003

    LI Z Y, TANG T, WANG Z H, et al. Preparation of lithium manganese iron phosphate cathode material from vanadium tailings[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 19-27. doi: 10.7513/j.issn.1004-7638.2024.06.003
    [11] WANG S W, ZHENG H, WANG J P. A method for directly preparing sodium vanadium phosphate cathode material from sodium-based vanadium solution: CN117361485A[P]. 2024-01-09. (王仕伟, 郑浩, 汪劲鹏. 一种钠法钒液直接制备磷酸钒钠正极材料的方法: 117361485A[P]. 2024-01-09.

    WANG S W, ZHENG H, WANG J P. A method for directly preparing sodium vanadium phosphate cathode material from sodium-based vanadium solution: CN117361485A[P]. 2024-01-09.
    [12] NI W, XIN Y N, YANG Y, et al. A carbon-composite sodium vanadium phosphate-based cathode material for sodium-ion batteries and its short-process preparation method: CN119409157A[P]. 2025-02-11. (倪伟, 辛亚男, 杨亚, 等. 一种碳复合磷酸钒钠基钠电正极材料及其短流程制备方法: 119409157A[P]. 2025-02-11.

    NI W, XIN Y N, YANG Y, et al. A carbon-composite sodium vanadium phosphate-based cathode material for sodium-ion batteries and its short-process preparation method: CN119409157A[P]. 2025-02-11.
    [13] MOSER T. Stability of model V P O catalysts for maleic anhydride synthesis[J]. Journal of Catalysis, 1987, 104(1): 99-108. doi: 10.1016/0021-9517(87)90340-X
    [14] XIE L, YANG Y, FU Z, et al. Fe/Zn-modified tricalcium phosphate (TCP) biomaterials: preparation and biological properties[J]. RSC Advances, 2019, 9(2): 781-789. doi: 10.1039/C8RA08453J
    [15] SHI G K, XIE J P, LI Z B, et al. A bismuth oxide-modified copper host achieving bubble-free and stable potassium metal batteries[J]. Chemical Science, 2025, 16(3): 1344-1352. doi: 10.1039/D4SC07483A
    [16] IGARASHI H, TSUJI K, OKUHARA T, et al. Effects of consecutive oxidation on the production of maleic anhydride in butane oxidation over four kinds of well-characterized vanadyl pyrophosphates[J]. Journal of Physical Chemistry, 1993, 97(27): 7065-7071. doi: 10.1021/j100129a023
    [17] PHAM Q N, WINTER M, MILANOVA V, et al. Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires[J]. Bioengineering, 2022.
    [18] LUO Q C, ZHANG D B, YUAN X R, et al. Revealing the regulation mechanism of Na3V2(PO4)2O2F crystal growth in sodium alginate solution for high-performance sodium ion batteries[J]. Journal of Power Sources, 2024, 623: 235438. doi: 10.1016/j.jpowsour.2024.235438
    [19] ZHANG D B, YUAN X R, XIN Y N, et al. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 12-18. (张东彬, 袁欣然, 辛亚男, 等. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003

    ZHANG D B, YUAN X R, XIN Y N, et al. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
    [20] NI W. Low-dimensional vanadium-based high-voltage cathode materials for promising rechargeable alkali-ion batteries[J]. Materials, 2024, 17: 587. doi: 10.3390/ma17030587
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 录用日期:  2025-05-16
  • 修回日期:  2025-05-13
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回