中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸亚铁提纯制备磷酸锰铁锂正极材料及性能影响研究

曾晓君 张勤 苏宝才 谢元健 蔡平雄

曾晓君, 张勤, 苏宝才, 谢元健, 蔡平雄. 硫酸亚铁提纯制备磷酸锰铁锂正极材料及性能影响研究[J]. 钢铁钒钛, 2025, 46(5): 163-169. doi: 10.7513/j.issn.1004-7638.2025.05.017
引用本文: 曾晓君, 张勤, 苏宝才, 谢元健, 蔡平雄. 硫酸亚铁提纯制备磷酸锰铁锂正极材料及性能影响研究[J]. 钢铁钒钛, 2025, 46(5): 163-169. doi: 10.7513/j.issn.1004-7638.2025.05.017
ZENG Xiaojun, ZHANG Qin, SU Baocai, XIE Yuanjian, CAI Pingxiong. Preparation of lithium manganese iron phosphate cathode material by purification of ferrous sulfate and study on its performance influence[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 163-169. doi: 10.7513/j.issn.1004-7638.2025.05.017
Citation: ZENG Xiaojun, ZHANG Qin, SU Baocai, XIE Yuanjian, CAI Pingxiong. Preparation of lithium manganese iron phosphate cathode material by purification of ferrous sulfate and study on its performance influence[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 163-169. doi: 10.7513/j.issn.1004-7638.2025.05.017

硫酸亚铁提纯制备磷酸锰铁锂正极材料及性能影响研究

doi: 10.7513/j.issn.1004-7638.2025.05.017
基金项目: 广西大学生创新创业训练计划资助项目(S202311607177);北部湾大学海洋一流学科卓越学生人才培养计划(20243302);广西大学对口支援学科建设项目(2023B04)。
详细信息
    作者简介:

    曾晓君,2002年出生,女,广西梧州人,能源化学工程本科在读,E-mail:2404915731@qq.com

    通讯作者:

    蔡平雄,1970年出生,男,广西灵山人,博士,教授级高级工程师,研究方向为无机化工,E-mail:pingxiongcai@bbgu.edu.cn

  • 中图分类号: TF823

Preparation of lithium manganese iron phosphate cathode material by purification of ferrous sulfate and study on its performance influence

  • 摘要: 采用硫酸法工艺在生产钛白粉的过程中产生大量的副产品硫酸亚铁,以提纯后硫酸亚铁作为原料,采用一步水热法合成经济价值更高的磷酸锰铁锂正极材料,研究原料中部分去除的镁元素对磷酸锰铁锂正极材料的物理和电化学性能的影响。结果显示,原料采用质量分数为6%的氟化铵为化学沉淀剂,得到镁杂质脱除率为98.86%的硫酸亚铁产品,合成的材料为不规则球形形貌正交晶系的磷酸锰铁锂材料,少量镁杂质改变了材料中锂离子的活动空间,使锂离子迁移速率得到提升,合成的磷酸锰铁锂正极材料(LMFP/C-2)放电比容量在0.1C和2C下分别为135.24 mAh/g和86.16 mAh/g,在0.1C下循化100圈后放电比容量保持率可达到97.70%,所得产物稍优于高纯度商业材料的性能。
  • 图  1  不同氟化铵用量对镁离子脱除的影响

    Figure  1.  The effect of different ammonium fluoride addition on the removal of magnesium ions

    图  2  硫酸亚铁提纯前后XRD分析

    Figure  2.  XRD spectra of ferrous sulfate before and after purification

    图  3  LMFP/C与LMFP/C-2样品的XRD分析

    Figure  3.  XRD patterns of LMFP/C and LMFP/C-2 samples

    图  4  LMFP/C-2正极材料的SEM形貌以及粒径分布

    Figure  4.  SEM morphology and particle size distribution chart of LMFP/C-2 cathode material

    (a)SEM形貌; (b) 粒径分布

    图  5  LMFP/C-2正极材料的TEM分析

    (a) TEM图像; (b)(c) 高倍TEM图像

    Figure  5.  TEM images of LMFP/C-2 cathode material

    图  6  不同条件下的循环伏安曲线

    (a) LMFP/C-2样品前三圈;(b) 1 mV/s下LMFP/C与LMFP/C-2

    Figure  6.  Cyclic voltammetry curves under different conditions

    图  7  不同Mg含量的倍率与循环性能

    (a) 不同Mg含量的倍率性能图;(b) LMFP/C材料与LMFP/C-2样品0.1C下的循环性能

    Figure  7.  Rate capability and cycling performance at different Mg contents

    图  8  LMFP/C与LMFP/C-2的EIS对比

    (a) LMFP/C与LMFP/C-2样品的Nyquist图和等效电路; (b) Z′与低频区ω−1/2线性拟合

    Figure  8.  Comparison of EIS between LMFP/C and LMFP/C-2

    表  1  七水硫酸亚铁主要化学成分

    Table  1.   Main chemical composition of ferrous sulfate %

    FeTiSMgCaAlZn
    260.03150.760. 0460.0020.008
    注:其余为游离水
    下载: 导出CSV

    表  2  七水硫酸亚铁提纯后各元素质量分数

    Table  2.   Mass fraction of each element in the product after purifying ferrous sulfate heptahydrate %

    FeTiMnMgCaAlZn
    99.970.0030.0040.00870. 0010.00150.008
    注:其余为游离水
    下载: 导出CSV

    表  3  LMFP/C与LMFP/C-2样品的晶胞参数与晶胞体积

    Table  3.   Cell parameters and cell volumes of LMFP/C and LMFP/C-2 samples

    项目a/nmb/nmc/nmV/nm3
    LMFP/C1.0460.6040.47429.949
    LMFP/C-21.0410.6060.47429.863
    下载: 导出CSV
  • [1] WU Y F, BAI L F, WANG P F, et al. Research on positive electrode materials for lithium ion batteries[J]. Power Technology, 2019, 43(9): 1547-1550. (吴怡芳, 白利锋, 王鹏飞, 等. 锂离子电池正极材料研究[J]. 电源技术, 2019, 43(9): 1547-1550. doi: 10.3969/j.issn.1002-087X.2019.09.038

    WU Y F, BAI L F, WANG P F, et al. Research on positive electrode materials for lithium ion batteries[J]. Power Technology, 2019, 43(9): 1547-1550. doi: 10.3969/j.issn.1002-087X.2019.09.038
    [2] RAO Y Y, WANG K P, ZENG H. Research progress of lithium manganese iron phosphate materials in lithium batteries[J]. Power Technology, 2016, 40(2): 455-457. (饶媛媛, 王康平, 曾晖. 磷酸锰铁锂材料在锂电池中的研究进展[J]. 电源技术, 2016, 40(2): 455-457. doi: 10.3969/j.issn.1002-087X.2016.02.067

    RAO Y Y, WANG K P, ZENG H. Research progress of lithium manganese iron phosphate materials in lithium batteries[J]. Power Technology, 2016, 40(2): 455-457. doi: 10.3969/j.issn.1002-087X.2016.02.067
    [3] DU H, KANG Y, LI C, et al. Easily recyclable lithium-ion batteries: Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder[J]. Battery Energy, 2023, 2(4): 20230011. doi: 10.1002/bte2.20230011
    [4] SU B C, ZHANG Q, XIE Y J, et al. Research progress on synthesis methods and structural modification of lithium iron manganese phosphate materials[J]. Inorganic Salt Industry, 2024, 56(7): 28-36. (苏宝才, 张勤, 谢元健, 等. 磷酸铁锰锂材料的合成方法及结构改性的研究进展[J]. 无机盐工业, 2024, 56(7): 28-36.

    SU B C, ZHANG Q, XIE Y J, et al. Research progress on synthesis methods and structural modification of lithium iron manganese phosphate materials[J]. Inorganic Salt Industry, 2024, 56(7): 28-36.
    [5] WANG L, LI Y, WU J, et al. Synthesis mechanism and characterization of LiMn0.5Fe0.5PO4/C composite cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 839: 155653. doi: 10.1016/j.jallcom.2020.155653
    [6] LUO T, ZENG T, CHEN S, et al. Structure, performance, morphology and component transformation mechanism of LiMn0.8Fe0.2PO4/C nanocrystal with excellent stability[J]. Journal of Alloys and Compounds, 2020, 834: 155143. doi: 10.1016/j.jallcom.2020.155143
    [7] WANG Y, HU G, CAO Y, et al. Highly atom-economical and environmentally friendly synthesis of LiMn0.8Fe0.2PO4/rGO/C cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2020, 354: 136743. doi: 10.1016/j.electacta.2020.136743
    [8] BEZZA I, AZIAM H, SAADOUNE I. On the LiFe1-xMnxPO4 (x= 0, 0.4, 0.6, 0.65, 1) olivine-type cathode materials for lithium ion batteries[J]. Materials Today: Proceedings, 2022, 51: 1913-1917. doi: 10.1016/j.matpr.2021.02.648
    [9] BI S. The current situation, future and development of China's titanium dioxide industry in 2023[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 1-3. (毕胜. 2023年中国钛白粉行业的现状、未来及发展[J]. 钢铁钒钛, 2024, 45(1): 1-3. doi: 10.7513/j.issn.1004-7638.2024.01.001

    BI S. The current situation, future and development of China's titanium dioxide industry in 2023[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 1-3. doi: 10.7513/j.issn.1004-7638.2024.01.001
    [10] CHEN P, ZHENG X, CHENG W. Biochar combined with ferrous sulfate reduces nitrogen and carbon losses during agricultural waste composting and enhances microbial diversity[J]. Process Safety and Environmental Protection, 2022, 162: 531-542. doi: 10.1016/j.psep.2022.04.042
    [11] GAO G Y, GAO L K, RAO B, et al. The current status and prospects of resource utilization of sulfuric acid titanium dioxide waste acid[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 99-108. (高广言, 高利坤, 饶兵, 等. 硫酸法钛白废酸资源化利用现状及展望[J]. 钢铁钒钛, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016

    GAO G Y, GAO L K, RAO B, et al. The current status and prospects of resource utilization of sulfuric acid titanium dioxide waste acid[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016
    [12] GUO J. Research on the process technology of purifying titanium white slag to prepare battery grade ferrous sulfate[J]. Inorganic Salt Industry, 2019, 51(8): 48-51. (郭举. 钛白渣提纯制备电池级硫酸亚铁工艺技术研究[J]. 无机盐工业, 2019, 51(8): 48-51. doi: 10.11962/1006-4990.2018-0675

    GUO J. Research on the process technology of purifying titanium white slag to prepare battery grade ferrous sulfate[J]. Inorganic Salt Industry, 2019, 51(8): 48-51. doi: 10.11962/1006-4990.2018-0675
    [13] YUAN W L, WANG B X, ZHAO Y, et al. Synthesis of iron phosphate precursor from ferrous sulfate, a byproduct of titanium dioxide[J]. Nonferrous Metals Engineering, 2023, 13(7): 61-68. (袁文龙, 王碧侠, 赵瑛, 等. 用钛白副产硫酸亚铁合成磷酸铁前驱体[J]. 有色金属工程, 2023, 13(7): 61-68. doi: 10.3969/j.issn.2095-1744.2023.07.009

    YUAN W L, WANG B X, ZHAO Y, et al. Synthesis of iron phosphate precursor from ferrous sulfate, a byproduct of titanium dioxide[J]. Nonferrous Metals Engineering, 2023, 13(7): 61-68. doi: 10.3969/j.issn.2095-1744.2023.07.009
    [14] WEN Z P, PAN K, WEI Y, et al. Research progress on modification of lithium manganese iron phosphate cathode materials[J]. Energy Storage Science and Technology, 2024, 13(3): 770-787. (文志朋, 潘凯, 韦毅, 等. 磷酸锰铁锂正极材料改性研究进展[J]. 储能科学与技术, 2024, 13(3): 770-787.

    WEN Z P, PAN K, WEI Y, et al. Research progress on modification of lithium manganese iron phosphate cathode materials[J]. Energy Storage Science and Technology, 2024, 13(3): 770-787.
    [15] JANG D, PALANISAMY K, KIM Y, et al. Structural and electrochemical properties of doped LiFe0.48Mn0.48Mg0.04PO4 as cathode material for lithium ion batteries[J]. Journal of Electrochemical Science and Technology, 2013, 4(3): 102-107. doi: 10.33961/JECST.2013.4.3.102
    [16] ZHANG X, HOU M, TAMIRATE A G, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227438. doi: 10.1016/j.jpowsour.2019.227438
    [17] JIN H, ZHANG J, QIN L, et al. Dual modification of olivine LiFe0. 5Mn0. 5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62(2): 1029-1034.
    [18] LI C W, XU S G, YU H F, et al. Research on magnesium doped modified LiMn0. 5Fe0. 5PO4/C positive electrode material and properties[J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. (李晨威, 徐世国, 余海峰, 等. 镁掺杂改性LiMn0.5Fe0.5PO4/C正极材料与性能研究[J]. 储能科学与技术, 2024, 13(6): 1767-1774.

    LI C W, XU S G, YU H F, et al. Research on magnesium doped modified LiMn0. 5Fe0. 5PO4/C positive electrode material and properties[J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774.
    [19] LUO S, SUN Y, BAO S, et al. Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability[J]. Journal of Electroanalytical Chemistry, 2019, 832: 196-203. doi: 10.1016/j.jelechem.2018.10.062
    [20] XU W, ZHOU Y, JI X. Lithium-ion-transfer kinetics of single LiFePO4 particles[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 4976-4980. doi: 10.1021/acs.jpclett.8b02315
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-17
  • 录用日期:  2025-03-26
  • 修回日期:  2025-03-20
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回