中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辽宁朝阳某高钛高钒铁精矿工艺矿物学及提质可行性研究

张艺曦 陈茅 王帅 解焱钦 陈凤 杨凌志 郭宇峰 姜涛

张艺曦, 陈茅, 王帅, 解焱钦, 陈凤, 杨凌志, 郭宇峰, 姜涛. 辽宁朝阳某高钛高钒铁精矿工艺矿物学及提质可行性研究[J]. 钢铁钒钛, 2025, 46(5): 198-204. doi: 10.7513/j.issn.1004-7638.2025.05.022
引用本文: 张艺曦, 陈茅, 王帅, 解焱钦, 陈凤, 杨凌志, 郭宇峰, 姜涛. 辽宁朝阳某高钛高钒铁精矿工艺矿物学及提质可行性研究[J]. 钢铁钒钛, 2025, 46(5): 198-204. doi: 10.7513/j.issn.1004-7638.2025.05.022
ZHANG Yixi, CHEN Mao, WANG Shuai, XIE Yanqin, CHEN Feng, YANG Lingzhi, GUO Yufeng, JIANG Tao. Study on process mineralogy and upgrading feasibility of a high-titanium and high-vanadium iron concentrate in Chaoyang, Liaoning[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 198-204. doi: 10.7513/j.issn.1004-7638.2025.05.022
Citation: ZHANG Yixi, CHEN Mao, WANG Shuai, XIE Yanqin, CHEN Feng, YANG Lingzhi, GUO Yufeng, JIANG Tao. Study on process mineralogy and upgrading feasibility of a high-titanium and high-vanadium iron concentrate in Chaoyang, Liaoning[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(5): 198-204. doi: 10.7513/j.issn.1004-7638.2025.05.022

辽宁朝阳某高钛高钒铁精矿工艺矿物学及提质可行性研究

doi: 10.7513/j.issn.1004-7638.2025.05.022
基金项目: 钒钛资源综合利用产业技术创新战略联盟2023年度协同研发项目“低铁高钛高钒型铁精矿冶金应用基础研究”。
详细信息
    作者简介:

    张艺曦,2001年出生,男,辽宁大连人,博士研究生,主要从事辽西钒钛资源综合利用方面的研究工作,E-mail:1694656111@qq.com

    通讯作者:

    王帅,1988年出生,男,山西祁县人,博士,副教授,主要从事烧结球团、复杂矿综合利用等方面的研究工作,E-mail:s.wang@csu.edu.cn

  • 中图分类号: TF044

Study on process mineralogy and upgrading feasibility of a high-titanium and high-vanadium iron concentrate in Chaoyang, Liaoning

  • 摘要: 辽宁朝阳地区发现了丰富的钒钛磁铁矿资源,其预选精矿的特征为具有高硅高钛高钒的显著特征。对该精矿进行工艺矿物学研究,探索进一步脱硅提质的可行性,对于该地区钒钛资源的深度开发利用具有重要意义。运用选矿工艺矿物学研究方法,查明了该精矿的主要矿物及其嵌布关系,铁精矿中有价矿物主要为钛磁铁矿、钛铁矿及少量的赤铁矿,脉石矿物主要为铁橄榄石和长石等硅酸盐矿物及少量的榍石。钒和钛主要赋存在钛磁铁矿是导致铁精矿高钒高钛的主要原因,钛磁铁矿之中嵌布着细小粒度的脉石,导致了铁精矿的高钙、高硅特征。通过细磨后磁选的手段可以有效地将该精矿提质。而钛磁铁矿中紧密嵌布的细小脉石颗粒通过细磨较难充分解离,部分钙、硅元素以常规细磨磁选较难去除,提质后精矿依然存在6.68%的SiO2和3.22%的CaO。
  • 图  1  精矿的X射线衍射分析图谱

    Figure  1.  X ray diffraction analysis of iron ore

    图  2  钛磁铁矿嵌布特征及能谱微区成分分析结果

    (a)钛磁铁矿与钛铁矿嵌布;(b)钛磁铁矿与硅酸盐嵌布

    Figure  2.  Disseminating characteristic and SEM-EDS analysis results of titanomagnetite

    图  3  钛铁矿嵌布特征及能谱微区成分分析结果

    (a)钛铁矿与钛磁铁矿嵌布;(b)钛铁矿与硅酸盐嵌布

    Figure  3.  Disseminating characteristic and SEM-EDS analysis results of ilmenite

    图  4  榍石嵌布特征及能谱微区成分分析结果

    (a)榍石区域显微结构图像;(b)榍石颗粒局部放大图像

    Figure  4.  Disseminating characteristic and SEM-EDS analysis results of sphene

    图  5  铁精矿中硅酸盐矿物嵌布特征及能谱微区成分分析结果

    (a)硅酸盐与钛磁铁矿嵌布;(b)硅酸盐与钛磁铁矿、钛铁矿嵌布

    Figure  5.  Disseminating characteristic and SEM-EDS analysis results of gangue

    图  6  钛磁铁矿SEM面分析结果

    Figure  6.  SEM surface analysis of titanomagnetite

    表  1  铁精矿的主要化学成分

    Table  1.   The major chemical components of iron ore %

    TFeTiO2V2O5FeOSiO2CaOMgOAl2O3SLOI
    42.4517.031.5413.937.743.630.902.360.0452.5
    下载: 导出CSV

    表  2  精矿矿物组成与含量

    Table  2.   Mineral composition and content of iron ore %

    Titanomagnetite Ilmenite Fayalite Hematite
    81.57 7.94 5.22 2.54
    Feldspars Sphene Other gangue
    1.53 0.96 0.24
    下载: 导出CSV

    表  3  铁元素在不同物相间分布率

    Table  3.   Inter-phase distribution rate of Fe %

    TitanomagnetiteIlmeniteFayaliteHematiteSpheneTotal
    86.926.023.443.260.36100
    下载: 导出CSV

    表  4  钛元素在不同物相间分布率

    Table  4.   Inter-phase distribution rate of Ti %

    TitanomagnetiteIlmeniteSpheneHematiteFayaliteTotal
    76.6821.511.090.660.06100
    下载: 导出CSV

    表  5  精矿中主要含铁矿物粒度分布

    Table  5.   Grain size distribution of main minerals in iron concentrate

    Size fraction/μmTitanomagnetiteIlmeniteFayaliteFeldspars
    Yield/%Cumulative
    yield/%
    Yield/%Cumulative
    yield/%
    Yield/%Cumulative
    yield/%
    Yield/%Cumulative
    yield/%
    >5002.892.892.802.8012.1112.1110.4110.41
    (212, 500]12.5315.4221.1023.9023.4335.5431.0741.48
    (150, 212]17.5532.9725.9049.8022.1357.6720.7062.18
    (106, 150]17.6650.6319.0368.8319.2276.8916.4178.58
    (75, 106]15.4366.0615.0383.8610.2687.159.3587.93
    (53, 75]10.5176.577.8391.695.0692.215.2393.16
    (38, 53]6.7283.293.2794.963.1095.312.5595.71
    (25, 38]6.6589.942.2597.211.7397.041.5897.29
    (10, 25]9.4899.422.6599.862.7799.812.5199.80
    ≤100.581000.141000.191000.21100
    下载: 导出CSV

    表  6  精矿中各物相解离度分析

    Table  6.   Dissociation degree of main minerals in iron concentrate %

    Mineral Individual particles X≥80% 80%>X≥60% 60%>X≥40% 40%>X≥20% X<20%
    Titanomagnetite 73.13 11.13 8.22 4.04 2.47 1.01
    Ilmenite 12.53 8.15 19.64 19.92 18.37 21.39
    Fayalite 16.12 8.49 21.13 16.66 16.3 21.3
    Hematite 27.8 6.33 13.03 7.53 8.39 36.93
    Feldspars 8.42 1.88 11.82 26.39 17.07 34.42
    下载: 导出CSV

    表  7  提质精矿理论计算结果

    Table  7.   Theoretical calculation results of titanium enrichment concentrate %

    NameTFeTiO2V2O5SiO2CaO
    Enriched concentrate42.4618.261.646.173.88
    Raw concentrate42.4517.031.547.743.63
    下载: 导出CSV

    表  8  精矿磁选提质试验结果

    Table  8.   Test results of magnetic separation for concentrate upgrading %

    Magnetic field strengthYieldTFeTiO2V2O5SiO2CaO
    Feed concentrate10042.4517.031.547.743.63
    0.6 TConcentrate91.0143.9918.211.576.683.22
    Tailings8.9926.845.081.2318.436.67
    1.0 TConcentrate96.3743.8517.591.566.953.69
    Tailings3.635.262.150.9328.821.94
    下载: 导出CSV
  • [1] WANG X Q. Blast furnace smelting of vanadium - titanium magnetite[M]. Beijing: Metallurgical Industry Press, 1994: 1-18. (王喜庆. 钒钦磁铁矿高炉冶炼[M]. 北京: 冶金工业出版社, 1994: 1-18.

    WANG X Q. Blast furnace smelting of vanadium - titanium magnetite[M]. Beijing: Metallurgical Industry Press, 1994: 1-18.
    [2] YANG Z J, WANG F Y, LUO R F, et al. Magnetic separation enrichment method for ultra-fine vanadium - titanium magnetite in Western Sichuan[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 26-29. (杨招君, 王丰雨, 罗荣飞, 等. 攀西超细粒级钒钛磁铁矿磁选富集方法[J]. 钢铁钒钛, 2019, 40(3): 26-29. doi: 10.7513/j.issn.1004-7638.2019.03.005

    YANG Z J, WANG F Y, LUO R F, et al. Magnetic separation enrichment method for ultra-fine vanadium - titanium magnetite in Western Sichuan[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 26-29. doi: 10.7513/j.issn.1004-7638.2019.03.005
    [3] YANG J Y, TANG Y, YANG K, et al. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site[J]. Hazard. Mater, 2014, 264: 498-504.
    [4] LIU F Y, XU L, CHEN C, et al. The occurrence state of titanium and prediction of theoretical indicators in a strongly altered vanadium - titanium magnetite in Western Sichuan[J]. Nonferrous Metals (Ore Dressing Section), 2024(6): 13-20, 39. (刘飞燕, 徐力, 陈超, 等. 攀西某强蚀变钒钛磁铁矿钛的赋存状态及理论指标预测[J]. 有色金属(选矿部分), 2024(6): 13-20, 39.

    LIU F Y, XU L, CHEN C, et al. The occurrence state of titanium and prediction of theoretical indicators in a strongly altered vanadium - titanium magnetite in Western Sichuan[J]. Nonferrous Metals (Ore Dressing Section), 2024(6): 13-20, 39.
    [5] ZHANG L. Experimental study on the separation of titanium concentrate from the vanadium - titanium magnetite tailings in the western part of Liaoning Province [D]. Shenyang: Northeastern University, 2020. (张乐. 从辽西地区钒钛磁铁矿选铁尾矿中分选钛精矿的实验研究[D]. 沈阳: 东北大学, 2020.

    ZHANG L. Experimental study on the separation of titanium concentrate from the vanadium - titanium magnetite tailings in the western part of Liaoning Province [D]. Shenyang: Northeastern University, 2020.
    [6] LIU J S, XING Z X, CHENG G J, et al. Study on the grinding kinetics and magnetic separation of low-grade vanadiferous titanomagnetite concentrate[J]. Metals, 2022, 12(4): 575.
    [7] LIU Z X. Research and industrial practice on the upgrading and impurity reduction of the Baima vanadium - titanium magnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 104-110. (刘志雄. 白马钒钛磁铁矿提质降杂研究及工业实践[J]. 钢铁钒钛, 2022, 43(3): 104-110.

    LIU Z X. Research and industrial practice on the upgrading and impurity reduction of the Baima vanadium - titanium magnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 104-110.
    [8] LIU J S, XING Z X, CHENG G J, et al. Oxidation behavior of low-grade vanadiferous titanomagnetite concentrate with high titanium[J]. Journal of Iron and Steel Research International, 2024, 31: 329-341.
    [9] CHENG G J, XUE X X, GAO Z X, et al. Key technologies for the comprehensive utilization of high - vanadium and high - titanium magnetite resources in western Liaoning[C]// The Chinese Society for Metals. Proceedings of the 12th China Steelmaking Conference. (程功金, 薛向欣, 高子先, 等. 辽西高钒高钛型磁铁矿资源综合利用关键技术[C]// 中国金属学会. 第十二届中国钢铁年会论文集.

    CHENG G J, XUE X X, GAO Z X, et al. Key technologies for the comprehensive utilization of high - vanadium and high - titanium magnetite resources in western Liaoning[C]// The Chinese Society for Metals. Proceedings of the 12th China Steelmaking Conference.
    [10] XING B, HU X M, ZHANG J L, et al. Experimental study on the mineral processing of a vanadium - titanium magnetite in Chaoyang[J]. Contemporary Chemical Industry Research, 2021(15): 172-174. (邢波, 胡秀明, 张金良, 等. 朝阳某钒钛磁铁矿选矿试验研究[J]. 当代化工研究, 2021(15): 172-174. doi: 10.3969/j.issn.1672-8114.2021.15.084

    XING B, HU X M, ZHANG J L, et al. Experimental study on the mineral processing of a vanadium - titanium magnetite in Chaoyang[J]. Contemporary Chemical Industry Research, 2021(15): 172-174. doi: 10.3969/j.issn.1672-8114.2021.15.084
    [11] DONG Z H, LI W B, LI Y J. Experimental study on the pre - enrichment of weathering - shell type vanadium - titanium magnetite in western Liaoning[J]. Metal Mines, 2019(2): 150-155. (董振海, 李文博, 李艳军. 辽西风化壳型钒钛磁铁矿预富集试验研究[J]. 金属矿山, 2019(2): 150-155.

    DONG Z H, LI W B, LI Y J. Experimental study on the pre - enrichment of weathering - shell type vanadium - titanium magnetite in western Liaoning[J]. Metal Mines, 2019(2): 150-155.
    [12] XU C B, ZHANG Y M, LIU T, et al. Process mineralogy study of a vanadium - titanium magnetite in western Liaoning[J]. Nonferrous Metals (Ore Dressing Section), 2018(3): 1-5, 41. (许承宝, 张一敏, 刘涛, 等. 辽西某钒钛磁铁矿工艺矿物学研究[J]. 有色金属(选矿部分), 2018(3): 1-5, 41.

    XU C B, ZHANG Y M, LIU T, et al. Process mineralogy study of a vanadium - titanium magnetite in western Liaoning[J]. Nonferrous Metals (Ore Dressing Section), 2018(3): 1-5, 41.
    [13] ZHONG X, SHI Z X, GAO J. Process mineralogy discussion of the Baima vanadium - titanium magnetite in Western Sichuan[J]. Metallurgical Analysis, 2021, 41(10): 29-35. (钟祥, 史志新, 高健. 攀西地区白马钒钛磁铁矿工艺矿物学探讨[J]. 冶金分析, 2021, 41(10): 29-35. doi: 10.13228/j.boyuan.issn1000-7571.011357

    ZHONG X, SHI Z X, GAO J. Process mineralogy discussion of the Baima vanadium - titanium magnetite in Western Sichuan[J]. Metallurgical Analysis, 2021, 41(10): 29-35. doi: 10.13228/j.boyuan.issn1000-7571.011357
    [14] YU H D, WANG L N, QU J K, et al. Process mineralogy characteristics and ore value of typical Chinese vanadium - titanium magnetites[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(2): 275-281. (于宏东, 王丽娜, 曲景奎, 等. 中国典型钒钛磁铁矿的工艺矿物学特征与矿石价值[J]. 东北大学学报(自然科学版), 2020, 41(2): 275-281. doi: 10.12068/j.issn.1005-3026.2020.02.022

    YU H D, WANG L N, QU J K, et al. Process mineralogy characteristics and ore value of typical Chinese vanadium - titanium magnetites[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(2): 275-281. doi: 10.12068/j.issn.1005-3026.2020.02.022
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-05
  • 录用日期:  2025-09-12
  • 修回日期:  2025-09-11
  • 刊出日期:  2025-10-30

目录

    /

    返回文章
    返回