Reflections on the transformation and developments of the comprehensive utilization of vanadium–titanium resources in Panxi
-
摘要: 铁钒钛资源是全球公认的战略性矿产资源,对我国国防、经济及科技的发展均具有战略意义。攀西是我国最大、世界重要的铁钒钛资源基地,已建成了完整的铁钒钛产业链,但仍存在钒钛综合利用率低、高端产品少、生产能耗高、固废产量大等问题。围绕攀西铁钒钛共伴生资源高效清洁利用,笔者系统分析了攀西铁钒钛资源利用现状,提出了攀西铁钒钛资源综合利用转型升级方向,包括工艺技术创新、产品迭代升级、清洁能源利用、固废处理强化和选冶流程再造等五个方面,大力推动我国钒钛产业高效化、高端化、绿色化和智能化发展,实现国家“双碳”目标,保障我国铁钒钛资源与基础原材料的安全供给。Abstract: Iron-vanadium-titanium resources are globally recognized as strategic mineral resources and of critical importance to national defense, economic development, and technological advancement. The Panxi region, hosting China’s largest and a world-significant iron-vanadium-titanium resource base, has established a complete industrial chain for these metals. However, it still faces challenges such as low comprehensive utilization rates of vanadium and titanium, an insufficient share of high-end products, high energy consumption in production, and significant solid waste generation. Focusing on the efficient and clean utilization of vanadium-titanium resources in the Panxi region, this paper systematically analyzes the current state of resource utilization and proposes key directions for transformation and upgrading. These directions encompass five major aspects: technological and process innovation, product iteration and upgrading, utilization of clean energy, strengthening of solid waste management, and reengineering of beneficiation and metallurgical process flows. The proposed strategies aim to promote the efficient, high-value, green, and intelligent development of China’s vanadium and titanium industry. Such progress will contribute to achieving the national “dual-carbon” goals and ensure the secure supply of iron-vanadium-titanium resources and related raw materials for the country.
-
表 1 2024年我国钛产品进出口量汇总
Table 1. Summary of China's titanium product import and export volume in 2024
商品名称 进口数量/万t 出口数量/万t 其他锻轧钛及钛制品 75.5 411.6 钛板、片、带、箔① 107.1 146.6 钛条、杆、型材及异型材 378.3 1074.6 钛丝 27.9 133.9 钛板、片、带② 106.5 973.1 钛管 33.2 396.3 其他未锻轧钛 21.9 137.4 钛粉末 11.4 57.4 海绵钛 10.1 595.3 钛白粉 9203.8 190208.2 注:①厚度≤0.8 mm;②厚度>0.8 mm。(数据来源:中国海关) 表 2 2024年攀枝花市钒钛资源综合利用固废主要种类产生及堆存情况
Table 2. Solid waste generation from comprehensive VTM utilization in Panxi
种类 产生量/万t 综合利用量/万t 堆存量/万t 尾矿 5534.7 481.3 1831.4 钛石膏 533.1 96.9 439.4 冶炼废渣(包括高炉
钛渣、熔盐氯化渣等)545.3 477.1 75.3 钒污泥 17.4 11.2 6.2 化工废物 81.4 37.0 47.0 数据来源:攀枝花生态环境局[31] -
[1] YUAN Z Z. Metallic materials(3rd ed)[M]. Beijing: Chemical Industry Press, 2019. (袁志钟. 金属材料学(第3版)[M]. 北京: 化学工业出版社, 2019.YUAN Z Z. Metallic materials(3rd ed)[M]. Beijing: Chemical Industry Press, 2019. [2] ZHANG X Y, ZHANG Y, DAI C D, et al. Effect of Nb, V and Ti microalloying on microstructure and mechanical properties of hot stamping steel[J]. Heat Treatment of Metals, 2025, 50(8): 14-20. (张翔宇, 张宇, 代春朵, 等. 铌钒钛微合金化对热成形钢组织与力学性能的影响[J]. 金属热处理, 2025, 50(8): 14-20.ZHANG X Y, ZHANG Y, DAI C D, et al. Effect of Nb, V and Ti microalloying on microstructure and mechanical properties of hot stamping steel[J]. Heat Treatment of Metals, 2025, 50(8): 14-20. [3] GUO F X, ZHANG J F, ZHAO Y L, et al. Effect of micro-Ti treatment on microstructure and mechanical properties of V microalloyed steel[J]. Iron Steel Vanadium Titanium, 2011, 32(3): 21-24. (国富兴, 张俊粉, 赵英利, 等. 微钛处理对钒微合金钢组织与力学性能的影响[J]. 钢铁钒钛, 2011, 32(3): 21-24.GUO F X, ZHANG J F, ZHAO Y L, et al. Effect of micro-Ti treatment on microstructure and mechanical properties of V microalloyed steel[J]. Iron Steel Vanadium Titanium, 2011, 32(3): 21-24. [4] LIU S F, SONG X, XUE T, et al. Application and development of titanium alloys and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. (刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.LIU S F, SONG X, XUE T, et al. Application and development of titanium alloys and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. [5] QIAN J, WANG Y, LI Y. The application of titanium and titanium alloys on foreign vessels[J]. Ship Science and Technology, 2016, 38(11): 1-6,19. (钱江, 王怡, 李瑶. 钛及钛合金在国外舰船上的应用[J]. 舰船科学技术, 2016, 38(11): 1-6,19.QIAN J, WANG Y, LI Y. The application of titanium and titanium alloys on foreign vessels[J]. Ship Science and Technology, 2016, 38(11): 1-6,19. [6] KAN Y Y, SU F Z, XU X R, et al. Application status of industrial titanium and titanium alloy materials[J]. Shanghai Chemical Industry, 2023, 48(6): 58-61. (阚延勇, 苏方正, 徐曦荣, 等. 工业用钛及钛合金材料的应用现状[J]. 上海化工, 2023, 48(6): 58-61. doi: 10.3969/j.issn.1004-017X.2023.06.027KAN Y Y, SU F Z, XU X R, et al. Application status of industrial titanium and titanium alloy materials[J]. Shanghai Chemical Industry, 2023, 48(6): 58-61. doi: 10.3969/j.issn.1004-017X.2023.06.027 [7] NASSAR N T, DAVID P, ALLEN S M, et al. Methodology and technical input for the 2025 U. S. list of critical minerals—assessing the potential effects of mineral commodity supply chain disruptions on the U. S. economy: 2025-1047[R]. U. S. Geological Survey, 2025. [8] Department of Industry, Science and Resources. Critical minerals strategy 2023–2030[R]. Canberra: Commonwealth of Australia, 2023. [9] Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 establishing a framework for ensuring a secure and sustainable supply of critical raw materials[A]. 2024. [10] YANG Y H, HUI B, YAN S Q, et al. Overview of global vanadium-titanium magnetite resources and progress in comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 1-11. (杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4): 1-11.YANG Y H, HUI B, YAN S Q, et al. Overview of global vanadium-titanium magnetite resources and progress in comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 1-11. [11] YAN W P, ZHANG B Y, YANG Y H, et al. Overview and progress in comprehensive utilization technology of vanadium titanium magnetite resources in China[J]. Metal Mine, 2024(11): 70-80. (严伟平, 张博远, 杨耀辉, 等. 中国钒钛磁铁矿资源概况及综合利用技术进展[J]. 金属矿山, 2024(11): 70-80.YAN W P, ZHANG B Y, YANG Y H, et al. Overview and progress in comprehensive utilization technology of vanadium titanium magnetite resources in China[J]. Metal Mine, 2024(11): 70-80. [12] CHI R A, QIN Z H, GUO W D, et al. Current situation of vanadium resources and research progress of vanadium extraction technology[J]. Nonferrous Metals (Mineral Processing Section), 2025: 0-22. (池汝安, 覃哲昊, 郭文达, 等. 钒资源现状及提钒技术研究进展分析[J]. 有色金属(选矿部分), 2025: 0-22.CHI R A, QIN Z H, GUO W D, et al. Current situation of vanadium resources and research progress of vanadium extraction technology[J]. Nonferrous Metals (Mineral Processing Section), 2025: 0-22. [13] WANG L P, WANG H, GAO Q, et al. Distribution of titanium resources and current production status in China[J]. Chinese Journal of Rare Metals, 2004(1): 265-267. (王立平, 王镐, 高颀, 等. 我国钛资源分布和生产现状[J]. 稀有金属, 2004(1): 265-267. doi: 10.19614/j.cnki.jsks.202411009WANG L P, WANG H, GAO Q, et al. Distribution of titanium resources and current production status in China[J]. Chinese Journal of Rare Metals, 2004(1): 265-267. doi: 10.19614/j.cnki.jsks.202411009 [14] LIAO R Y Z, GONG X B, HUANG D Z, et al. Distribution characteristics and enrichment mechanism of vanadium-titanium resources in Sichuan[J]. Acta Geologica Sichuan, 2025, 45(S2): 32-38. (廖阮颖子, 龚晓波, 黄德智, 等. 四川钒钛资源分布特征与富集机制研究[J]. 四川地质学报, 2025, 45(S2): 32-38.LIAO R Y Z, GONG X B, HUANG D Z, et al. Distribution characteristics and enrichment mechanism of vanadium-titanium resources in Sichuan[J]. Acta Geologica Sichuan, 2025, 45(S2): 32-38. [15] WANG H M, SHENG S X. Ten years of blast furnace smelting of high-titanium vanadium-titanium magnetite at Pangang[J]. Iron Steel Vanadium Titanium, 1980(4): 4-16, 62. (王宏民, 盛世雄. 攀钢高钛型钒钛磁铁矿高炉冶炼十年[J]. 钢铁钒钛, 1980(4): 4-16, 62.WANG H M, SHENG S X. Ten years of blast furnace smelting of high-titanium vanadium-titanium magnetite at Pangang[J]. Iron Steel Vanadium Titanium, 1980(4): 4-16, 62. [16] ZHENG X, DU L, LI S, et al. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid[J]. Minerals Engineering, 2023, 202: 108279. doi: 10.1016/j.mineng.2023.108279 [17] ZHU Z M, LIN J, ZHANG G L, et al. Strategic minerals in Panxi vanadium-titanium magnetite tailings and their comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 42-49. (朱志敏, 林建, 张国礼, 等. 攀西钒钛磁铁矿尾矿中战略性矿产及其综合利用[J]. 矿产综合利用, 2023(4): 42-49. doi: 10.3969/j.issn.1000-6532.2023.04.006ZHU Z M, LIN J, ZHANG G L, et al. Strategic minerals in Panxi vanadium-titanium magnetite tailings and their comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 42-49. doi: 10.3969/j.issn.1000-6532.2023.04.006 [18] YANG S L, MA L, WANG J, et al. Application status and development direction of comprehensive utilization technologies for Panxi titanium resources[J]. China Nonferrous Metallurgy, 2024, 53(6): 2-12. (杨绍利, 马兰, 王军, 等. 攀西钛资源综合利用技术应用现状及发展方向[J]. 中国有色冶金, 2024, 53(6): 2-12. doi: 10.19612/j.cnki.cn11-5066/tf.2024.06.001YANG S L, MA L, WANG J, et al. Application status and development direction of comprehensive utilization technologies for Panxi titanium resources[J]. China Nonferrous Metallurgy, 2024, 53(6): 2-12. doi: 10.19612/j.cnki.cn11-5066/tf.2024.06.001 [19] GUO W G, LUO D P, XIANG J R, et al. Current situation of China’s titanium dioxide industry and policy recommendations for disposal and utilization of titanium gypsum[J]. Modern Chemical Industry, 2025, 45(1): 7-12. (郭卫广, 罗大鹏, 向璟荣, 等. 我国钛白粉行业现状及钛石膏处置利用政策建议[J]. 现代化工, 2025, 45(1): 7-12.GUO W G, LUO D P, XIANG J R, et al. Current situation of China’s titanium dioxide industry and policy recommendations for disposal and utilization of titanium gypsum[J]. Modern Chemical Industry, 2025, 45(1): 7-12. [20] MEI Y, SHAN Y K, HE K H. Distribution features of vanadium-titanomagnetite in Panxi regions and its mining and beneficiating techniques[J]. Journal of Xichang University (Natural Science Edition), 2023, 37(1): 58-65. (梅燕, 单永奎, 何科瀚. 攀西钒钛磁铁矿分布特征及采矿选矿技术[J]. 西昌学院学报(自然科学版), 2023, 37(1): 58-65. doi: 10.16104/j.issn.1673-1891.2023.01.009MEI Y, SHAN Y K, HE K H. Distribution features of vanadium-titanomagnetite in Panxi regions and its mining and beneficiating techniques[J]. Journal of Xichang University (Natural Science Edition), 2023, 37(1): 58-65. doi: 10.16104/j.issn.1673-1891.2023.01.009 [21] WANG A W, LIU J S, ZHOU G H, et al. Study on optimal process flow and equipment of a 200 kt titanium beneficiation plant in Panzhihua[R]. Pangang Group Company Limited, 2005. (王安五, 刘吉实, 周光华, 等. 攀枝花20万吨选钛厂最佳工艺流程及装置的研究[R]. 攀钢集团矿业公司, 2005.WANG A W, LIU J S, ZHOU G H, et al. Study on optimal process flow and equipment of a 200 kt titanium beneficiation plant in Panzhihua[R]. Pangang Group Company Limited, 2005. [22] ZHANG L, WANG C F. Research progress on beneficiation technologies and comprehensive utilization of vanadium–titanium magnetite resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 127-137. (张礼, 王长福. 钒钛磁铁矿资源选矿技术及综合利用研究进展[J]. 矿产保护与利用, 2023, 43(5): 127-137. doi: 10.13779/j.cnki.issn1001-0076.2023.05.014ZHANG L, WANG C F. Research progress on beneficiation technologies and comprehensive utilization of vanadium–titanium magnetite resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 127-137. doi: 10.13779/j.cnki.issn1001-0076.2023.05.014 [23] YANG S P, FENG Y B, WANG M, et al. Occurrence form and phase crystallization performance of titanium in high-titanium blast furnace slag[J]. Iron and Steel, 2025, 60(4): 179-189. (杨双平, 冯宇波, 王苗, 等. 含钛高炉渣钛的赋存形式及物相结晶性能计算[J]. 钢铁, 2025, 60(4): 179-189. doi: 10.13228/j.boyuan.issn0449-749x.20240545YANG S P, FENG Y B, WANG M, et al. Occurrence form and phase crystallization performance of titanium in high-titanium blast furnace slag[J]. Iron and Steel, 2025, 60(4): 179-189. doi: 10.13228/j.boyuan.issn0449-749x.20240545 [24] CHANG F Z, ZHAO B B, LI L J, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 71-78. (常福增, 赵备备, 李兰杰, 等. 钒钛磁铁矿提钒技术研究现状与展望[J]. 钢铁钒钛, 2018, 39(5): 71-78. doi: 10.7513/j.issn.1004-7638.2018.05.013CHANG F Z, ZHAO B B, LI L J, et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 71-78. doi: 10.7513/j.issn.1004-7638.2018.05.013 [25] PANAYOTOVA M, DIMITROV I, SOFRONIEVA A. Initial characterization of titanium- and vanadium-rich magnetite from the Manastir Heights in southeast Bulgaria[J]. Minerals, 2025, 15(9). [26] ZHANG S, ZHANG J, WANG Z, et al. Advancements in oxygen blast furnace technology and its application in the smelting of vanadium-titanium magnetite: a comprehensive review[J]. Minerals Engineering, 2024, 212: 108732. doi: 10.1016/j.mineng.2024.108732 [27] WANG Y, WANG Y, LI Y, et al. A review on vanadium extraction techniques from major vanadium-containing resources[J]. Rare Metals, 2024, 43(9): 4115-4131. doi: 10.1007/s12598-024-02721-w [28] LIU B, CHEN Y, YANG P, et al. Critical metals recovery from titanium dioxide waste acids (TDWA): a brief review[J]. Minerals Engineering, 2025, 234. [29] ZHANG J L, ZHENG F Q, GUO Y F, et al. Recent development and prospects of research on preparation of boiling chlorination burden from electric furnace titanium slag by impurity removal[J]. Rare Metals and Cemented Carbides, 2021, 49(1): 23-29. (张金来, 郑富强, 郭宇峰, 等. 电炉钛渣除杂制备沸腾氯化炉料研究现状及展望[J]. 稀有金属与硬质合金, 2021, 49(1): 23-29. doi: 10.19990/j.issn.1004-0536.2021.01.005ZHANG J L, ZHENG F Q, GUO Y F, et al. Recent development and prospects of research on preparation of boiling chlorination burden from electric furnace titanium slag by impurity removal[J]. Rare Metals and Cemented Carbides, 2021, 49(1): 23-29. doi: 10.19990/j.issn.1004-0536.2021.01.005 [30] WU F, REN Y, CHEN D, et al. Recovery methods and application prospects of transition metals from bulk solid waste generated in the phosphorus chemical and vanadium titanium industries[J]. Separation and Purification Technology, 2025, 375: 133836. doi: 10.1016/j.seppur.2025.133836 [31] 攀枝花市2024年固体废物污染环境防治信息发布内容[EB/OL]. [2025-12-16]. http://sthjj.panzhihua.gov.cn/zfxxgk/hbyw/trygtfw/gtfwhjgl/10216334.shtml.Release of information on prevention and control of environmental pollution by solid waste in Panzhihua City in 2024[EB/OL]. [2025-12-16]. http://sthjj.panzhihua.gov.cn/zfxxgk/hbyw/trygtfw/gtfwhjgl/10216334.shtml. ( [32] GAN C, CUI S, WU Z, et al. Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes[J]. Journal of Hazardous Materials, 2022, 429. [33] YU X, KANG X, LI Y, et al. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata[J]. Environmental Pollution, 2019, 255. [34] CHENG J, LI H, GAO D, et al. Our journey in greenization of vanadium extraction from vanadium slag in China[J]. Transactions of the Nonferrous Metals Society of China, 2025, 35(4): 1306-1324. doi: 10.1016/S1003-6326(24)66750-6 [35] JU J, FENG Y, LI H, et al. A sustainable method for Ti, Al and Mg recovery from titanium-bearing blast furnace slag coupled with CO2 sequestration by leaching residue[J]. JOM, 2023, 75(2): 358-369. doi: 10.1007/s11837-022-05484-w [36] ZENG S L, ZHANG Z G, ZHOU R, et al. Application of ZCLA separator in commercial test of preconcentration of iron ore from Meishan iron mine[J]. Mining and Metallurgical Engineering, 2020, 40(4): 57-59. (曾尚林, 张祖刚, 周润, 等. ZCLA选矿机应用于梅山铁矿预选工业试验研究[J]. 矿冶工程, 2020, 40(4): 57-59. doi: 10.3969/j.issn.0253-6099.2020.04.014ZENG S L, ZHANG Z G, ZHOU R, et al. Application of ZCLA separator in commercial test of preconcentration of iron ore from Meishan iron mine[J]. Mining and Metallurgical Engineering, 2020, 40(4): 57-59. doi: 10.3969/j.issn.0253-6099.2020.04.014 [37] LIU A P, YI D Q, ZHANG Z G, et al. Application of ZCLA magnetic separator in Meishan gravity concentration branch’s 2-0.5 system[J]. Mining and Metallurgical Engineering, 2020, 40(6): 59-61. (刘安平, 衣德强, 张祖刚, 等. ZCLA型磁选机在重选2-0.5系统的应用[J]. 矿冶工程, 2020, 40(6): 59-61.LIU A P, YI D Q, ZHANG Z G, et al. Application of ZCLA magnetic separator in Meishan gravity concentration branch’s 2-0.5 system[J]. Mining and Metallurgical Engineering, 2020, 40(6): 59-61. [38] YAN W P. Study on new beneficiation technology for a refractory ultrafine ilmenite ore in Panxi[J]. Nonferrous Metals Engineering, 2020, 10(8): 76-82. (严伟平. 攀西某微细粒难选钛铁矿的选矿新工艺研究[J]. 有色金属工程, 2020, 10(8): 76-82.YAN W P. Study on new beneficiation technology for a refractory ultrafine ilmenite ore in Panxi[J]. Nonferrous Metals Engineering, 2020, 10(8): 76-82. [39] SHEN S, YUAN Z, LIU J, et al. Preconcentration of ultrafine ilmenite ore using a superconducting magnetic separator[J]. Powder Technology, 2020, 360: 1-9. doi: 10.1016/j.powtec.2019.09.074 [40] HUANG H C, CHEN L Z, XIONG T, et al. Experimental study on new high gradient magnetic separation process for recovery of ultra-fine ilmenite from titanium tailings in Panxi region[J]. Metal Mine, 2023(10): 100-104. (黄会春, 陈禄政, 熊涛, 等. 攀西某选钛尾矿强磁回收微细粒钛铁矿的新工艺试验研究[J]. 金属矿山, 2023(10): 100-104.HUANG H C, CHEN L Z, XIONG T, et al. Experimental study on new high gradient magnetic separation process for recovery of ultra-fine ilmenite from titanium tailings in Panxi region[J]. Metal Mine, 2023(10): 100-104. [41] HE B L, YUAN M Z, CHEN J, et al. Experimental study on combined wet high intensity magnetic separation of a fine fraction ilmenite[J]. Resource Information and Engineering, 2020, 35(6): 59-61,66. (和奔流, 袁铭泽, 陈俊, 等. 某微细粒级钛铁矿组合湿式强磁选试验研究[J]. 资源信息与工程, 2020, 35(6): 59-61,66. doi: 10.3969/j.issn.2095-5391.2020.06.018HE B L, YUAN M Z, CHEN J, et al. Experimental study on combined wet high intensity magnetic separation of a fine fraction ilmenite[J]. Resource Information and Engineering, 2020, 35(6): 59-61,66. doi: 10.3969/j.issn.2095-5391.2020.06.018 [42] LAI Q W, CHEN L Z, XIONG T, et al. Experiment on separation of ultra-fine ilmenite from titanium tailings in Panxi region[J]. Nonferrous Metals Engineering, 2023, 13(10): 53-60. (赖启威, 陈禄政, 熊涛, 等. SL离心机从攀西选钛尾矿中分选微细钛铁矿试验[J]. 有色金属工程, 2023, 13(10): 53-60. doi: 10.3969/j.issn.2095-1744.2023.10.008LAI Q W, CHEN L Z, XIONG T, et al. Experiment on separation of ultra-fine ilmenite from titanium tailings in Panxi region[J]. Nonferrous Metals Engineering, 2023, 13(10): 53-60. doi: 10.3969/j.issn.2095-1744.2023.10.008 [43] WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained ilmenite in Panxi region[J]. Mineral Resources Protection and Utilization, 2020, 40(2): 55-59. (王丰雨, 徐晓衣, 梁焘茂, 等. 攀枝花超细粒级钛铁矿磁选富集方法[J]. 矿产保护与利用, 2020, 40(2): 55-59.WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained ilmenite in Panxi region[J]. Mineral Resources Protection and Utilization, 2020, 40(2): 55-59. [44] LIANG X Y, YE G H, HU Y J, et al. Study on beneficiation pretreatment of fine-grained ilmenite[J]. Nonferrous Metals (Mineral Processing Section), 2023(3): 70-75. (梁雪崟, 叶国华, 胡渝杰, 等. 微细粒级钛铁矿的选矿预处理研究[J]. 有色金属(选矿部分), 2023(3): 70-75. doi: 10.3969/j.issn.1671-9492.2023.03.009LIANG X Y, YE G H, HU Y J, et al. Study on beneficiation pretreatment of fine-grained ilmenite[J]. Nonferrous Metals (Mineral Processing Section), 2023(3): 70-75. doi: 10.3969/j.issn.1671-9492.2023.03.009 [45] Panzhihua Iron and Steel Group. Pangang’s new titanium beneficiation equipment achieves major breakthrough in efficient TiO2 concentration[EB/OL]. 2025[2025-11-28]. https://www.panyan.cn/xwzx_gsdt/010011500015921.html. (攀钢集团. 攀钢选钛新装备高效富集TiO2取得重要突破[EB/OL]. 2025[2025-11-28]. https://www.panyan.cn/xwzx_gsdt/010011500015921.html.Panzhihua Iron and Steel Group. Pangang’s new titanium beneficiation equipment achieves major breakthrough in efficient TiO2 concentration[EB/OL]. 2025[2025-11-28]. https://www.panyan.cn/xwzx_gsdt/010011500015921.html. [46] DENG J, XUE X, LIU G G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang[J]. Journal of Materials and Metallurgy, 2007, 6(2): 5. (邓君, 薛逊, 刘功国. 攀钢钒钛磁铁矿资源综合利用现状与发展[J]. 材料与冶金学报, 2007, 6(2): 5.DENG J, XUE X, LIU G G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang[J]. Journal of Materials and Metallurgy, 2007, 6(2): 5. [47] PENG Y J, LÜ C. Current status and progress in comprehensive utilization of vanadium–titanium magnetite[J]. Mining Research and Development, 2019, 39(5): 130-135. (彭英健, 吕超. 钒钛磁铁矿综合利用现状及进展[J]. 矿业研究与开发, 2019, 39(5): 130-135. doi: 10.13827/j.cnki.kyyk.2019.05.027PENG Y J, LÜ C. Current status and progress in comprehensive utilization of vanadium–titanium magnetite[J]. Mining Research and Development, 2019, 39(5): 130-135. doi: 10.13827/j.cnki.kyyk.2019.05.027 [48] GELDENHUYS I J, REYNOLDS Q G, AKDOGAN G. Evaluation of titania-rich slag produced from titaniferous magnetite under fluxless smelting conditions[J]. JOM, 2020, 72(10): 3462-3471. doi: 10.1007/s11837-020-04304-3 [49] TANG J, CHU M S, XUE X X. Optimized use of MgO flux in the agglomeration of high-chromium vanadium-titanium magnetite[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4): 371-380. doi: 10.1007/s12613-015-1082-2 [50] LIU J. Fundamental and application research of double-layer iron ore sintering with ultra-high bed[D]. Changsha: Central South University, 2023. (刘杰. 铁矿超高料层双层烧结工艺的基础与应用研究[D]. 长沙: 中南大学, 2023.LIU J. Fundamental and application research of double-layer iron ore sintering with ultra-high bed[D]. Changsha :Central South University , 2023.[51] XIONG L. Study and application of optimizing layer structure in ultra-high layer iron ore sintering[D]. Changsha: Central South University, 2022. (熊林. 铁矿超高料层烧结的料层结构优化研究与应用[D]. 长沙: 中南大学, 2022.XIONG L. Study and application of optimizing layer structure in ultra-high layer iron ore sintering[D]. Changsha :Central South University , 2022.[52] LIU K. The fundamental research on behavior and control of reduction swelling and degradation of vanadium-titanium magnetite pellets[D]. Changsha: Central South University, 2023. (刘阔. 钒钛磁铁矿球团还原膨胀及粉化行为与调控的基础研究[D]. 长沙: 中南大学, 2023.LIU K. The fundamental research on behavior and control of reduction swelling and degradation of vanadium-titanium magnetite pellets[D]. Changsha :Central South University , 2023.[53] WANG S. Fundamental research on the activation of vanadium titanomagnetite by high pressure roller mill and strengthening the preparation of pellet[D]. Changsha: Central South University, 2022. (王殊. 高压辊磨活化钒钛磁铁矿及强化球团矿制备的基础研究[D]. 长沙: 中南大学, 2022.WANG S. Fundamental research on the activation of vanadium titanomagnetite by high pressure roller mill and strengthening the preparation of pellet[D]. Changsha :Central South University , 2022.[54] CHEN X L, HUANG Y S, FAN X H, et al. Oxidation roasting behavior and concretion properties of vanadium-titanium magnetite pellet[J]. Journal of Central South University(Science and Technology), 2016, 47(2): 359-366. (陈许玲, 黄云松, 范晓慧, 等. 钒钛磁铁矿球团氧化焙烧行为和固结特性[J]. 中南大学学报(自然科学版), 2016, 47(2): 359-366.CHEN X L, HUANG Y S, FAN X H, et al. Oxidation roasting behavior and concretion properties of vanadium-titanium magnetite pellet[J]. Journal of Central South University(Science and Technology), 2016, 47(2): 359-366. [55] FAN X H, XIE L B, GAN M, et al. Roasting characteristics of magnesium pellets and mechanism of strengthening concretion[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 449-455. (范晓慧, 谢路奔, 甘敏, 等. 高镁球团焙烧特性及其固结强化机理[J]. 中南大学学报(自然科学版), 2013, 44(2): 449-455.FAN X H, XIE L B, GAN M, et al. Roasting characteristics of magnesium pellets and mechanism of strengthening concretion[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 449-455. [56] ZHANG S J, XU Y L, XIE J Y, et al. Effect of blast furnace slag main components on its melting characteristics and viscosity properties[J]. Nonferrous Metals Engineering, 2016, 6(6): 50-54. (张士举, 胥有利, 谢金洋, 等. 高炉渣主要组分对其熔化特性及黏度的影响[J]. 有色金属工程, 2016, 6(6): 50-54. doi: 10.3969/j.issn.2095-1744.2016.06.011ZHANG S J, XU Y L, XIE J Y, et al. Effect of blast furnace slag main components on its melting characteristics and viscosity properties[J]. Nonferrous Metals Engineering, 2016, 6(6): 50-54. doi: 10.3969/j.issn.2095-1744.2016.06.011 [57] FENG C, GAO L H, TANG J, et al. Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO–Al2O3–TiO2–CaO–SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 800-811. doi: 10.1016/S1003-6326(20)65255-4 [58] CHEN M, SHI J J, TASKINEN P, et al. Phase equilibria of the CaO–SiO2–TiO2–Al2O3–MgO system in air at 1250–1400 ℃[J]. Ceramics International, 2020, 46(17): 27702-27710. doi: 10.1016/j.ceramint.2020.07.268 [59] FENG C, TANG J, GAO L H, et al. Effects of CaO/SiO2 on viscous behaviors and structure of CaO-SiO2-11.00wt%MgO-11.00wt%Al2O3-43.00wt%TiO2 slag systems[J]. ISIJ International, 2019, 59(1): 31. doi: 10.2355/isijinternational.ISIJINT-2018-444 [60] SHI J J, CHEN M, WAN X B, et al. Phase equilibrium study of the CaO-SiO2-MgO-Al2O3-TiO2 system at 1300 ℃ and 1400 ℃ in air[J]. JOM, 2020, 72(9): 3204-3212. doi: 10.1007/s11837-020-04136-1 [61] OU H Z. Experimental study on reasonable burden structure of blast furnace for smelting imported high chromia vanadia-titania magnetite[D]. Shenyang: Northeastern University, 2012. (欧浩展. 高炉冶炼进口高铬型钒钛磁铁矿合理炉料结构的实验研究[D]. 沈阳: 东北大学, 2012.OU H Z. Experimental study on reasonable burden structure of blast furnace for smelting imported high chromia vanadia-titania magnetite[D]. Shenyang :Northeastern University , 2012.[62] PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2021. (庞正德. 超高配比钒钛矿高炉冶炼基础理论研究[D]. 重庆: 重庆大学, 2021.PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing :Chongqing University, 2021.[63] HE Z W, XUE X X. Comparative study on metallurgical performance of different vanadium-titanium magnetite burdens[J]. Journal of Northeastern University(Natural Science), 2019, 40(2): 207-211. (何占伟, 薛向欣. 不同钒钛磁铁矿炉料冶金性能的对比研究[J]. 东北大学学报(自然科学版), 2019, 40(2): 207-211. doi: 10.12068/j.issn.1005-3026.2019.02.011HE Z W, XUE X X. Comparative study on metallurgical performance of different vanadium-titanium magnetite burdens[J]. Journal of Northeastern University(Natural Science), 2019, 40(2): 207-211. doi: 10.12068/j.issn.1005-3026.2019.02.011 [64] CHU M S, CHEN L J, LIU Z G, et al. Study on rational burden structure of smelting vanadium-titanium magnetite in blast furnace[J]. Henan Metallurgy, 2013, 21(6): 1-5,43. (储满生, 陈立杰, 柳政根, 等. 高炉冶炼钒钛磁铁矿合理炉料结构的研究[J]. 河南冶金, 2013, 21(6): 1-5,43. doi: 10.3969/j.issn.1006-3129.2013.06.001CHU M S, CHEN L J, LIU Z G, et al. Study on rational burden structure of smelting vanadium-titanium magnetite in blast furnace[J]. Henan Metallurgy, 2013, 21(6): 1-5,43. doi: 10.3969/j.issn.1006-3129.2013.06.001 [65] WU Y M. Measures for smelting with high percentage of V-bearing titanomagnetite in No. 2 BF of Panzhihua Steel & Vanadium[J]. Ironmaking, 2025, 44(1): 49-53. (吴亚明. 攀钢钒2号高炉高比例钒钛矿冶炼技术措施[J]. 炼铁, 2025, 44(1): 49-53. doi: 10.20202/j.ltzz.202501010WU Y M. Measures for smelting with high percentage of V-bearing titanomagnetite in No. 2 BF of Panzhihua Steel & Vanadium[J]. Ironmaking, 2025, 44(1): 49-53. doi: 10.20202/j.ltzz.202501010 [66] RAO J T, WANG Y J, HU P. A rapid economic evaluation method for pelletizing vanadium-titanium magnetite concentrate: CN201910833323.1[P]. 2022-05-24. (饶家庭, 王禹键, 胡鹏. 一种钒钛磁铁精矿造块经济性快速评价方法: CN201910833323.1[P]. 2022-05-24.RAO J T, WANG Y J, HU P. A rapid economic evaluation method for pelletizing vanadium-titanium magnetite concentrate: CN201910833323.1[P]. 2022-05-24. [67] FU W G, RAO J T, JIANG S, et al. A blast furnace smelting method for vanadium-titanium magnetite with a high proportion of pelletized ore: CN201810952882. X[P]. 2018-12-04. (付卫国, 饶家庭, 蒋胜, 等. 一种高比例球团矿的钒钛磁铁矿的高炉冶炼方法: CN201810952882. X[P]. 2018-12-04.FU W G, RAO J T, JIANG S, et al. A blast furnace smelting method for vanadium-titanium magnetite with a high proportion of pelletized ore: CN201810952882. X[P]. 2018-12-04. [68] JIA H, LU F S, HAO B. Report on China titanium industry in 2020[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 1-9. (贾翃, 逯福生, 郝斌. 2020年中国钛工业发展报告[J]. 钢铁钒钛, 2021, 42(3): 1-9.JIA H, LU F S, HAO B. Report on China titanium industry in 2020[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 1-9. [69] YE E D, CHENG X Z, MIAO H J, et al. Research on preparation of synthetic rutile with Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 7-15. (叶恩东, 程晓哲, 缪辉俊, 等. 攀西钛精矿制备人造金红石研究[J]. 钢铁钒钛, 2015, 36(1): 7-15.YE E D, CHENG X Z, MIAO H J, et al. Research on preparation of synthetic rutile with Panxi ilmenite[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 7-15. [70] GUÉGUIN M, CARDARELLI F. Chemistry and mineralogy of titania-rich slags. Part 1—hemo-ilmenite, sulphate, and upgraded titania slags[J]. Mineral Processing and Extractive Metallurgy Review, 2007, 28(1): 1-58. doi: 10.1080/08827500600564242 [71] ZHENG F, GUO Y, QIU G, et al. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2-HF leaching and hydrolyzing process[J]. Journal of Hazardous Materials, 2018, 344: 490-498. doi: 10.1016/j.jhazmat.2017.10.042 [72] ZHENG F, GUO Y, CHEN F, et al. Fluoride leaching of titanium from Ti-bearing electric furnace slag in [NH4+]-[F-] solution[J]. Metals, 2021, 11(8): 1176. doi: 10.3390/met11081176 [73] LIU Q M, ZHANG F M. Research progress on carbon reduction and CO2 resource utilization technologies in iron and steel industry[J]. Iron and Steel, 2024, 59(2): 13-24. (刘清梅, 张福明. 钢铁工业减碳与CO2资源化利用技术的研究进展[J]. 钢铁, 2024, 59(2): 13-24.LIU Q M, ZHANG F M. Research progress on carbon reduction and CO2 resource utilization technologies in iron and steel industry[J]. Iron and Steel, 2024, 59(2): 13-24. [74] HU T, LÜ X W, BAI C G, et al. Reduction behavior of Panzhihua titanomagnetite concentrates with coal[J]. Metallurgical and Materials Transactions B, 2013, 44(2): 252-260. doi: 10.1007/s11663-012-9783-7 [75] SAFARIAN S. To what extent could biochar replace coal and coke in steel industries?[J]. Fuel, 2023, 334: 126697. doi: 10.1016/j.fuel.2022.126697 [76] HE Z J, SHENG H Y, GAO L H, et al. Research progress on low-carbon ironmaking using biomass energy[J]. Iron and Steel, 2025, 60(1): 1-14. (何志军, 盛宏沅, 高立华, 等. 利用生物质能实现低碳炼铁的研究进展[J]. 钢铁, 2025, 60(1): 1-14. doi: 10.13228/j.boyuan.issn0449-749x.20240416HE Z J, SHENG H Y, GAO L H, et al. Research progress on low-carbon ironmaking using biomass energy[J]. Iron and Steel, 2025, 60(1): 1-14. doi: 10.13228/j.boyuan.issn0449-749x.20240416 [77] DAVIES-SMITH C A, HERBERT J, MARTIN C, et al. Enhancing biochar quality for the steel industry via hydrothermal pretreatment-steam explosion and pyrolysis[J]. Bioresource Technology, 2025, 437: 133009. doi: 10.1016/j.biortech.2025.133009 [78] GAN M, FAN X, JI Z, et al. Application of biomass fuel in iron ore sintering: influencing mechanism and emission reduction[J]. Ironmaking & Steelmaking, 2014, 42(1): 27-33. [79] WAN X Y, HONG L K, CHEN J S, et al. Hydrogen reduction behavior of biomass-containing vanadium-titanium magnetite pellets[J/OL]. Iron and Steel, 2025: 1-8[2025-11-28]. https://doi.org/10.13228/j.boyuan.issn0449-749x.20250365. (万新宇, 洪陆阔, 陈建松, 等. 内配生物质钒钛磁铁矿球团的氢还原行为[J/OL]. 钢铁, 2025: 1-8[2025-11-28]. https://doi.org/10.13228/j.boyuan.issn0449-749x.20250365.WAN X Y, HONG L K, CHEN J S, et al. Hydrogen reduction behavior of biomass-containing vanadium-titanium magnetite pellets[J/OL]. Iron and Steel, 2025: 1-8[2025-11-28]. https://doi.org/10.13228/j.boyuan.issn0449-749x.20250365. [80] HAN H L, YUAN P, DUAN D P, et al. Application of biomass in rotary hearth furnace direct reduction process[J]. Journal of Chongqing University, 2015, 38(5): 164-170. (韩宏亮, 苑鹏, 段东平, 等. 生物质用于转底炉直接还原工艺研究[J]. 重庆大学学报, 2015, 38(5): 164-170.HAN H L, YUAN P, DUAN D P, et al. Application of biomass in rotary hearth furnace direct reduction process[J]. Journal of Chongqing University, 2015, 38(5): 164-170. [81] BLENAU L W, SANDER S A H, FUHRMANN S, et al. Holistic valorization of fayalitic slag to pig iron and glass fibers[J]. Journal of Cleaner Production, 2023, 418: 137990. doi: 10.1016/j.jclepro.2023.137990 [82] HUANG Z C, JIANG X, YI L Y, et al. Effects of biomass on reduction behavior of vanadium-titanium magnetite and process enhancement[J]. Iron and Steel, 2021, 56(1): 12-20. (黄柱成, 姜雄, 易凌云, 等. 生物质对钒钛磁铁矿还原行为影响及过程强化[J]. 钢铁, 2021, 56(1): 12-20. doi: 10.13228/j.boyuan.issn0449-749x.20200288HUANG Z C, JIANG X, YI L Y, et al. Effects of biomass on reduction behavior of vanadium-titanium magnetite and process enhancement[J]. Iron and Steel, 2021, 56(1): 12-20. doi: 10.13228/j.boyuan.issn0449-749x.20200288 [83] LUO S Y, MA C, SUN P P. Reduction behavior and kinetics of iron ore-biomass composite pellets[J]. Chinese Journal of Engineering, 2015, 37(2): 150-156. (罗思义, 马晨, 孙鹏鹏. 铁矿-生物质复合球团还原行为及还原动力学[J]. 工程科学学报, 2015, 37(2): 150-156. doi: 10.13374/j.issn2095-9389.2015.02.002LUO S Y, MA C, SUN P P. Reduction behavior and kinetics of iron ore-biomass composite pellets[J]. Chinese Journal of Engineering, 2015, 37(2): 150-156. doi: 10.13374/j.issn2095-9389.2015.02.002 [84] VOGL V, ÅHMAN M, NILSSON L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203: 736-745. doi: 10.1016/j.jclepro.2018.08.279 [85] ZHAO Y C, XU Q, ZHOU W, et al. Impact and countermeasures of carbon border adjustment mechanism on China’s steel export[J]. Iron and Steel, 2025, 60(1): 191-203. (赵禹程, 徐潜, 周为, 等. 中国钢铁出口受碳边境调节机制影响与对策[J]. 钢铁, 2025, 60(1): 191-203. doi: 10.13228/j.boyuan.issn0449-749x.20240433ZHAO Y C, XU Q, ZHOU W, et al. Impact and countermeasures of carbon border adjustment mechanism on China’s steel export[J]. Iron and Steel, 2025, 60(1): 191-203. doi: 10.13228/j.boyuan.issn0449-749x.20240433 [86] WANG H F, ZHANG M M, LI H Q. Research progress on renewable energy water electrolysis for hydrogen production coupled with hydrogen metallurgy technology[J]. Iron and Steel, 2024, 59(4): 1-15. (王海风, 张明明, 李会泉. 可再生能源电解水制氢耦合氢冶金技术研究进展[J]. 钢铁, 2024, 59(4): 1-15.WANG H F, ZHANG M M, LI H Q. Research progress on renewable energy water electrolysis for hydrogen production coupled with hydrogen metallurgy technology[J]. Iron and Steel, 2024, 59(4): 1-15. [87] LI F, CHU M S, TANG J, et al. Current status, challenges, and development strategies of hydrogen metallurgy in China[J]. Forward Technology, 2024, 3(4): 44-57. (李峰, 储满生, 唐珏, 等. 中国氢冶金工艺现状、挑战及发展对策[J]. 前瞻科技, 2024, 3(4): 44-57. doi: 10.3981/j.issn.2097-0781.2024.04.004LI F, CHU M S, TANG J, et al. Current status, challenges, and development strategies of hydrogen metallurgy in China[J]. Forward Technology, 2024, 3(4): 44-57. doi: 10.3981/j.issn.2097-0781.2024.04.004 [88] TANG J, CHU M S, LI F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713-723. doi: 10.1007/s12613-020-2021-4 [89] LI L J, ZHANG C D, LIU Y, et al. Research progress on non-blast furnace smelting of vanadium-titanium magnetite and comprehensive utilization of titanium slag[J]. China Metallurgy, 2025, 35(3): 44-54,64. (李兰杰, 张彩东, 刘洋, 等. 钒钛磁铁矿非高炉冶炼与钛渣综合利用技术研究进展[J]. 中国冶金, 2025, 35(3): 44-54,64.LI L J, ZHANG C D, LIU Y, et al. Research progress on non-blast furnace smelting of vanadium-titanium magnetite and comprehensive utilization of titanium slag[J]. China Metallurgy, 2025, 35(3): 44-54,64. [90] YE Q, ZOU L, LU M, et al. Pyrometallurgical extraction of titanium from titanium-bearing blast furnace slag: recently development and prospect[J]. Minerals Engineering, 2025, 234: 109734. doi: 10.1016/j.mineng.2025.109734 [91] JING J F, GUO Y F, ZHENG F Q, et al. Development status on comprehensive utilization of Ti-bearing blast furnace slag[J]. Metal Mine, 2018(4): 185-191. (景建发, 郭宇峰, 郑富强, 等. 含钛高炉渣综合利用的研究进展[J]. 金属矿山, 2018(4): 185-191. doi: 10.3969/j.issn.1000-1646.2004.05.005JING J F, GUO Y F, ZHENG F Q, et al. Development status on comprehensive utilization of Ti-bearing blast furnace slag[J]. Metal Mine, 2018(4): 185-191. doi: 10.3969/j.issn.1000-1646.2004.05.005 [92] XIONG Y, LI C, LIANG B, et al. Leaching behavior of air-cooled Ti-bearing blast furnace slag in hydrochloric acid[J]. The Chinese Journal of Nonferrous Metals, 2008(3): 557-563. (熊瑶, 李春, 梁斌, 等. 盐酸浸出自然冷却含钛高炉渣[J]. 中国有色金属学报, 2008(3): 557-563. doi: 10.3321/j.issn:1004-0609.2008.03.030XIONG Y, LI C, LIANG B, et al. Leaching behavior of air-cooled Ti-bearing blast furnace slag in hydrochloric acid[J]. The Chinese Journal of Nonferrous Metals, 2008(3): 557-563. doi: 10.3321/j.issn:1004-0609.2008.03.030 [93] LI X H, PU J T. The latest developments of integrated utilization on Panzhihua high titanium-bearing BF slag[J]. Iron Steel Vanadium Titanium, 2011, 32(2): 10-14. (李兴华, 蒲江涛. 攀枝花高钛型高炉渣综合利用研究最新进展[J]. 钢铁钒钛, 2011, 32(2): 10-14.LI X H, PU J T. The latest developments of integrated utilization on Panzhihua high titanium-bearing BF slag[J]. Iron Steel Vanadium Titanium, 2011, 32(2): 10-14. [94] POURABDOLI M, RAYGAN S, ABDIZADEH H, et al. A new process for the production of ferrotitanium from titania slag[J]. Canadian Metallurgical Quarterly, 2007, 46(1): 17-23. doi: 10.1179/cmq.2007.46.1.17 [95] ZHONG X, LÜ X M, SHI Z X, et al. Process mineralogical study on blast furnace slag during high-temperature carbonization-low temperature chlorination[J]. Metallurgical Analysis, 2025, 45(8): 19-26. (钟祥, 吕学明, 史志新, 等. 高炉渣高温碳化-低温氯化过程工艺矿物学研究[J]. 冶金分析, 2025, 45(8): 19-26.ZHONG X, LÜ X M, SHI Z X, et al. Process mineralogical study on blast furnace slag during high-temperature carbonization-low temperature chlorination[J]. Metallurgical Analysis, 2025, 45(8): 19-26. [96] YANG Y J. High-value utilization technology of high-titanium blast furnace slag based on selective carbonization–chlorination theory[R]. Sichuan Province: Pangang Group Panzhihua Iron and Steel Research Institute Co. , Ltd. , 2021. (杨仰军. 基于选择性碳化—氯化理论的高钛型高炉渣高值化利用技术[R]. 四川省: 攀钢集团攀枝花钢铁研究院有限公司, 2021.YANG Y J. High-value utilization technology of high-titanium blast furnace slag based on selective carbonization–chlorination theory[R]. Sichuan Province: Pangang Group Panzhihua Iron and Steel Research Institute Co. , Ltd. , 2021. [97] WANG X Y, ZHAO H Q, QI X H, et al. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 50-58. (王新宇, 赵海泉, 齐渊洪, 等. 钒钛磁铁矿提钒尾渣综合利用工艺研究进展及展望[J]. 钢铁钒钛, 2024, 45(6): 50-58.WANG X Y, ZHAO H Q, QI X H, et al. Research progress and prospect of comprehensive utilization technology of vanadium extraction tailings from vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2024, 45(6): 50-58. [98] LIU J S, DING X Y, XUE X X, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160. (刘金生, 丁学勇, 薛向欣, 等. 提钒尾渣资源化综合利用的研究进展[J]. 钢铁, 2021, 56(7): 152-160. doi: 10.13228/j.boyuan.issn0449-749x.20200571LIU J S, DING X Y, XUE X X, et al. Research progress of comprehensive utilization of vanadium extraction tailings[J]. Iron and Steel, 2021, 56(7): 152-160. doi: 10.13228/j.boyuan.issn0449-749x.20200571 [99] WANG Z C, ZHENG F Q, LIU C, et al. Study on calcification reduction sodium removal of vanadium extraction tailings by coal-based rotary kiln method[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 91-95,130. (王兆才, 郑富强, 刘臣, 等. 提钒尾渣煤基回转窑法钙化还原脱钠研究[J]. 钢铁钒钛, 2024, 45(1): 91-95,130.WANG Z C, ZHENG F Q, LIU C, et al. Study on calcification reduction sodium removal of vanadium extraction tailings by coal-based rotary kiln method[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 91-95,130. [100] QU J W, WENG X Y, LI G S, et al. Study on calcified alkaline leaching of vanadium extraction tailings from vanadium titanium-magnetite metallurgy[J]. China Nonferrous Metallurgy, 2024, 53(2): 129-138. (瞿金为, 翁小影, 李高帅, 等. 钒钛磁铁矿提钒尾渣钙化碱浸试验研究[J]. 中国有色冶金, 2024, 53(2): 129-138. doi: 10.19612/j.cnki.cn11-5066/tf.2024.02.017QU J W, WENG X Y, LI G S, et al. Study on calcified alkaline leaching of vanadium extraction tailings from vanadium titanium-magnetite metallurgy[J]. China Nonferrous Metallurgy, 2024, 53(2): 129-138. doi: 10.19612/j.cnki.cn11-5066/tf.2024.02.017 [101] ZHENG F, GUO Y, LIU S, et al. Removal of magnesium and calcium from electric furnace titanium slag by H3PO4 oxidation roasting–leaching process[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 356-366. doi: 10.1016/S1003-6326(18)64669-2 [102] CHEN F, WEN Y K, GUO Y F, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022, 54(6): 1-5. (陈凤, 问悦凯, 郭宇峰, 等. 氯化熔盐体系黏度特性研究现状[J]. 无机盐工业, 2022, 54(6): 1-5. doi: 10.19964/j.issn.1006-4990.2021-0484CHEN F, WEN Y K, GUO Y F, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022, 54(6): 1-5. doi: 10.19964/j.issn.1006-4990.2021-0484 [103] LI L. Key technologies for molten salt chlorination of high-calcium–magnesium low-grade titanium slag[R]. Sichuan Province: Pangang Group Co. , Ltd. , 2021. (李亮. 高钙镁低品位钛渣熔盐氯化关键技术[R]. 四川省: 攀钢集团有限公司, 2021.LI L. Key technologies for molten salt chlorination of high-calcium–magnesium low-grade titanium slag[R]. Sichuan Province: Pangang Group Co. , Ltd. , 2021. [104] FU G H, YAO H G, CHEN F, et al. Development status on comprehensive utilization of residue of molten salt chlorination[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 112-118. (付刚华, 姚洪国, 陈凤, 等. 熔盐氯化废渣综合利用研究进展[J]. 矿产综合利用, 2023(3): 112-118.FU G H, YAO H G, CHEN F, et al. Development status on comprehensive utilization of residue of molten salt chlorination[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 112-118. [105] WANG X D, LEI T, ZOU P, et al. Study on safe disposal of molten salt chlorination residue in sponge titanium production[J]. China Nonferrous Metallurgy, 2008(4): 63-66. (王祥丁, 雷霆, 邹平, 等. 海绵钛生产中熔盐氯化废渣无害化处理的研究[J]. 中国有色冶金, 2008(4): 63-66. doi: 10.3969/j.issn.1672-6103.2008.04.016WANG X D, LEI T, ZOU P, et al. Study on safe disposal of molten salt chlorination residue in sponge titanium production[J]. China Nonferrous Metallurgy, 2008(4): 63-66. doi: 10.3969/j.issn.1672-6103.2008.04.016 [106] EDITORIAL OFFICE OF IRON STEEL VANADIUM TITANIUM. Core technologies for resource utilization of Pangang waste salt reach the international leading level[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 190-190. (钢铁钒钛编辑部. 攀钢废盐资源化利用核心技术达到国际领先水平[J]. 钢铁钒钛, 2022, 43(3): 190-190.EDITORIAL OFFICE OF IRON STEEL VANADIUM TITANIUM. Core technologies for resource utilization of Pangang waste salt reach the international leading level[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 190-190. [107] Pangang Group Panzhihua Iron and Steel Research Institute Co. , Ltd. A method for extracting scandium from by-products of comprehensive utilization in molten salt chlorination: CN202211702314.7[Z]. 2025. (攀钢集团攀枝花钢铁研究院有限公司. 一种从熔盐氯化综合利用副产物中提钪的方法: CN202211702314.7[Z]. 2025.Pangang Group Panzhihua Iron and Steel Research Institute Co. , Ltd. A method for extracting scandium from by-products of comprehensive utilization in molten salt chlorination: CN202211702314.7[Z]. 2025. [108] YANG J, LI Z X, QIN S B, et al. The preparation of magnesium metal and magnesium alloys from the waste salt from molten salt chlorination of Panzhihua titanium slag[J]. Mining and Metallurgical Engineering, 1994(4): 43-47. (杨健, 李宗雄, 覃事彪, 等. 从攀矿钛渣熔盐氯化废盐中制取镁及镁锰合金[J]. 矿冶工程, 1994(4): 43-47.YANG J, LI Z X, QIN S B, et al. The preparation of magnesium metal and magnesium alloys from the waste salt from molten salt chlorination of Panzhihua titanium slag[J]. Mining and Metallurgical Engineering, 1994(4): 43-47. [109] FENG C, WEN Y K, GUO Y F, et al. The transition of Mg-containing phases and recovery of NaCl in molten salt chloride slags at high temperature[J]. Materials, 2022, 15(17): 5983. doi: 10.3390/ma15175983 [110] GUO Y, ZHENG Y, CHEN F, et al. A novel method to recover NaCl from molten salt chlorination residue and recycle NaCl back into molten salt chlorination process in TiCl4 production: based on phase diagrams analysis[J]. Process Safety and Environmental Protection, 2025, 197: 107024. doi: 10.1016/j.psep.2025.107024 [111] SUI Y L, GUO Y F, JIANG T, et al. Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24: 10-17. [112] CHEN F, LI H, WANG S, et al. Effect of H2–CO ratio on reduction disintegration behavior and kinetics of vanadium–titanium magnetite pellets[J]. Metals, 2025, 15: 823. doi: 10.3390/met15080823 [113] CHEN F, LI H, GUO Y, et al. Reduction disintegration behavior and crystallographic transformation of vanadium-titanium magnetite pellets during hydrogen-based reduction[J]. Journal of Materials Research and Technology, 2025, 34: 152-163. doi: 10.1016/j.jmrt.2024.12.021 [114] WANG S, GUO Y, JIANG T, et al. Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace[J]. JOM, 2019, 71(1): 323-328. doi: 10.1007/s11837-018-2932-y [115] WANG S, GUO Y F, JIANG T, et al. Reduction behaviors of iron, vanadium and titanium oxides in smelting of vanadium titanomagnetite metallized pellets[J]. JOM, 2017, 69: 1646-1653. doi: 10.1007/s11837-017-2367-x [116] LI G H, JIANG T, YI L Y, et al. A short-flow and high-quality utilization method for vanadium-titanium magnetite resources: CN202510525993.2[P/OL]. China, 2025. (李光辉, 姜涛, 易凌云, 等. 一种钒钛磁铁矿资源短流程高质利用方法: CN202510525993.2[P/OL]. 中国, 2025.LI G H, JIANG T, YI L Y, et al. A short-flow and high-quality utilization method for vanadium-titanium magnetite resources: CN202510525993.2[P/OL]. China, 2025. -
下载: