Efficient metallurgical extraction of vanadium slag: Experimental phase diagram study and thermodynamic modeling of Na2O-K2O-V2O5 system
-
摘要: 构建准确可靠的热力学数据库对提钒过程优化以及钒酸盐材料的制备具有重要的应用价值和指导意义。采用封闭铂金坩埚,结合X射线衍射(XRD)与差热分析(DTA)技术,证实了K2O-V2O5体系中K3V5O14为稳定存在的化合物,并试验测定了K2V8O21和KVO3的熔化温度分别为532.4 ℃和516.5 ℃。随后采用修正的准化学模型(MQM),引入溶液中第二相邻阳离子短程有序对描述吉布斯自由能的变化。基于CALPHAD框架(CALculation of PHAse Diagram,相图计算),构建了Na2O-K2O-V2O5体系的热力学模型,重现了Na2O-K2O-V2O5体系全组分范围的实验数据和热力学性质,获得了该体系中所有物相一系列自洽的热力学模型参数,最终构建了可靠的热力学数据库。进一步探讨了当前数据库在钒渣钠化焙烧提钒中的应用,明确了含钒物相的迁移规律,确定了最佳的操作温度窗口。
-
关键词:
- Na2O-K2O-V2O5体系 /
- 相图 /
- 热力学优化 /
- CALPHAD
Abstract: Accurate and reliable thermodynamic databases are of significance for optimizing vanadium extraction and synthesizing vanadate materials. This study employed sealed platinum crucibles combined with X-ray diffraction (XRD) and differential thermal analysis (DTA) to confirm the presence of K3V5O14 in the K2O-V2O5 system, melting temperature of K2V8O21 and KVO3 were also determined as 532.4 ℃ and 516.5 ℃, respectively. Modified Quasichemical Model (MQM) was adopted, incorporating short-range ordering of second-neighboring cations in solution to describe changes in Gibbs free energy of solution phases. Thermodynamic model for the Na2O-K2O-V2O5 system was then developed in the framework of CALPHAD (Calculation of Phase Diagrams) methodology, reproducing experimental data across the entire composition range of the system. A self-consistent set of thermodynamic parameters for all phases in the system was obtained, ultimately establishing a reliable thermodynamic database. Furthermore, the developed database was applied to optimize sodium-roasting of vanadium slag at elevated temperatures, clarifying the phase evolution of vanadium-containing phases and identifying optimal operating temperature windows.-
Key words:
- Na2O-K2O-V2O5 system /
- phase diagram /
- thermodynamic optimization /
- CALPHAD
-
表 1 优化后的体系溶液相模型参数
Table 1. The optimized model parameters for liquid phase
体 系 模型参数 Na2O-V2O5 $ \Delta g_{\rm{Na -V O}}^{0 \quad 0}$=− 401078.2 +49T; $ \Delta g_{\rm{Na -V O}}^{1 \quad 0}$=−50000 ;
$ \Delta g_{\rm{Na -V O}}^{0 \quad 1}$=−360000 −74T; $ \Delta g_{\rm{Na -V O}}^{0 \quad 2}$=410000 −132T;
$ \Delta g_{\rm{Na -V O}}^{0 \quad 3}$=100000 −400T;K2O-V2O5 $ \Delta g_{\rm{K -V O}}^{0 \quad 0}$=− 536881 +32T; $ \Delta g_{\rm{K -V O}}^{0 \quad 1}$=−330000 +50T;
$ \Delta g_{\rm{K -V O}}^{0 \quad 2}$=26000 Na2O- K2O-V2O5 -
[1] JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(5): 1851-1874. [2] LIU Z K. Computational thermodynamics and its applications[J]. Acta Materialia 2020, 200: 745-792. [3] PEI G S, XIANG J Y, ZHONG D P, et al. Isothermal reduction of V2O5 powder using H2 as oxygen carrier: Thermodynamic evaluation, reaction sequence, and kinetic analysis[J]. Powder Technology 2021, 378: 785-794. [4] LEE S. A review on types of vanadium deposits and process mineralogical characteristics[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2020, 57(6): 640-651. doi: 10.32390/ksmer.2020.57.6.640 [5] KIM S M, JEON H S. Separation processes for self-sufficient recovery of vanadium resources in Korea[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers 2019, 56(3) : 292-302. [6] PEI G S, PAN C, ZHONG D P, et al. Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6)[J]. Journal of Magnesium and Alloys, 2024, 12(4): 1449-1460. [7] PEI G S, XIANG J Y, HUANG Q Y, et al. Double pyrovanadates CaMgV2O7: Formation mechanism, phase structure, and thermodynamic properties[J]. Journal of the American Ceramic Society 2022, 105(10): 6359-6369. [8] PEI G S, XIANG J Y, ZHONG D P, et al. A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H2 atmosphere: Thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation[J]. Journal of Alloys and Compounds, 2020, 845: 156305. doi: 10.1016/j.jallcom.2020.156305 [9] BAE K Y, JUNG Y H, CHO S H, et al. Design and analysis of an optimal cathode for Li-LiV3O8 secondary cells[J]. Journal of Alloys and Compounds, 2019, 784 (5) 704-711. [10] KÖHLER J, MAKIHARA H, UEGAITO H, et al. LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1): 59-65. doi: 10.1016/S0013-4686(00)00515-6 [11] YANG G, WANG G, HOU W. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. The Journal of Physical Chemistry B, 2005, 109(22): 11186-11196. [12] FENG L, ZHANG W, XU L, et al. Selecting the optimal calcination conditions for preparing LiV3O8 crystal[J]. Solid State Sciences, 2020, 103: 106187. [13] PAN A, LIU J, ZHANG J G, et al. Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries[J]. Journal of Materials Chemistry, 2011, 21(4): 1153-1161. [14] QIAO Y, TU J, WANG X, et al. Self-assembled synthesis of hierarchical waferlike porous Li–V–O composites as cathode materials for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(51): 25508-25518. [15] CUI C J, WU G M, SHEN J, et al. Synthesis and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(7): 2536-2541. [16] BALE C W, BÉLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases, 2010-2016[J]. Calphad, 2016, 54: 35-53. [17] PEI G S, XIANG J Y, LÜ X W, et al. High-temperature heat capacity and phase transformation kinetics of NaVO3[J]. Journal of Alloys and Compounds, 2019, 794: 465-472. doi: 10.1016/j.jallcom.2019.04.186 [18] PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of sodium pyrovanadate (Na4V2O7) at high temperature (298.15~873 K)[J]. Calphad , 2020, 70: 101802. [19] PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of magnesium orthovanadate Mg3(VO4)2 at high temperatures (298.15~1473 K)[J]. Calphad, 2021, 74: 102295. doi: 10.1016/j.calphad.2021.102295 [20] KIM D G, VAN ENDE M A, HUDON P, et al. Coupled experimental study and thermodynamic optimization of the K2O-SiO2 system[J]. Journal of Non-Crystalline Solids, 2017, 471: 51-64. doi: 10.1016/j.jnoncrysol.2017.04.029 [21] PELTON A D, DEGTEROV S A, ERIKSSON G. The modified quasichemical model I—Binary solutions[J]. Metallurgical and Materials Transactions B, 2000, 31(4): 651-659. [22] PELTON A D, CHARTRAND P. The modified quasi-chemical model: Part II. Multicomponent solutions[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1355-1360. doi: 10.1007/s11661-001-0226-3 [23] CAO Z, WANG N, XIE W, et al. Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air[J]. Calphad, 2017, 56: 72-79. doi: 10.1016/j.calphad.2016.12.001 [24] HUDON P, JUNG I H. Critical evaluation and thermodynamic optimization of the CaO-P2O5 system[J]. Metallurgical and Materials Transactions B, 2015, 46(1) (2015) 494-522. [25] CHEN Y Q, LEI L, REN Q, et al. Phase relations in the ZnO-V2O5-K2O system[J]. Chinese Physics B, 2011, 20(7): 076402. doi: 10.1088/1674-1056/20/7/076402 [26] KELMERS A D. Compounds in the system KVO3-V2O5[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 23(3): 279-283. [27] GLAZYRIN M P, FOTIEV A A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87. [28] KOLTA G A, HEWAIDY I F. Phase diagrams of binary systems vanadium oxide-sodium carbonate and vanadium oxide-sodium sulfate [J]. Thermochim. Acta, 1972, 25(7): 327-330. [29] DANCK V, MATIASOVSKY K, BALAJKA J. Study of the system V2O5-Na2O[J]. Chemicke Zvesti, 1973, 27(6): 748-751. [30] VOLKOV F A, VALIKHANOVA V L, Valikhanova N K. Vanadium pentoxide-sodium metavanadate system[J]. Zhurnal Neorganicheskoi Khimii, 1975, 2(20): 497-500. [31] FLOOD S H, VANADYL H. Vanadate, a new type of semiconductor. the system Na2O-V2O5[J]. Tidsskrift for Kjemi Bergvesen og Metallurgi 3 (1943): 55-59. [32] ILLARIONOV V V, OZEROV R P, KILDILDISHEVA E V. Phase diagrams for the system V2O5-Na2SO4 and V2O5-NaVO3[J]. Zhurnal Neorganicheskoi Khimii, 2 (1957): 883-889. [33] KERBY R, WILSON J. Solid–liquid phase equilibria for the ternary systems V2O5–Na2O–Fe2O3, V2O5–Na2O–Cr2O3, and V2O5–Na2O–MgO[J]. Canadian Journal of Chemistry, 1973, 51(7): 1032-1040. doi: 10.1139/v73-153 [34] LÜ X W, PEI G S, ZHONG D P, et al. Phase equilibrium of the V2O5–Na2O system[J]. Metallurgical and Materials Transactions B, 2022, 53(4): 2695-2703. doi: 10.1007/s11663-022-02560-z [35] SLOBODIN B, FOTIEY A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87. [36] DANEK V, VOTAVA I, MATIASOVSKY K. Study of the system V2O5-Na2O. Ⅱ[J]. Chemicke Zvesti, 1974 28(6): 728-732. [37] GOLOVKIN B, KRISTALLOV L, KRUCHININA M. Phase diagram of NaVO3-Na4V2O7 system[J]. Zhurnal Neorganicheskoj Khimii, 1995, 40(3): 514-518. [38] CANNERI G. Sui vanadicovanadati[J]. Gazz. chim. ital, 1928, 58 : 6. [39] HOLTZBERG F, REISMAN A, BERRY M. Reactions of the group VB pentoxides with alkali oxides and carbonates. II. phase diagram of the system K2CO3-V2O5[J]. Journal of the American Chemical Society, 1956, 78(8): 1536-1540. doi: 10.1021/ja01589a007 [40] KATO A, MOCHIDA I, SEIYAMA T. X-Ray powder patterns of K2O.4V2O5 and K2O.V2O4.8V2O5[J]. Analytica Chimica Acta, 1971, 54(1): 168-170. [41] ILLARIONOV V, OZEROV R, KILDISHEVA E. The system K2O-V2O5 in the region KVO3-V2O5[J]. Journal of Inorganic Chemistry -USSR, 1956, 1(4): 177-182. [42] BLOCK S. The Crystal Structure of K2V6O16[D]. Baltimore: Johns Hopkins University, 1955. [43] KELMERS A D. Ammonium, potassium, rubidium and cesium hexavanadates[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 21(1): 45-48. [44] EVANS H T, BLOCK S. The crystal structures of potassium and cesium trivanadates[J]. Inorganic Chemistry, 1966, 5(10): 1808-1814. doi: 10.1021/ic50044a037 [45] OKA Y, YAO T, YAMAMOTO N. Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs)[J]. Materials Research Bulletin, 1997, 32(9): 1201-1209. doi: 10.1016/S0025-5408(97)00096-2 [46] PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) system and its applications[D]. Chongqing: Chongqing University, 2023. [47] SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO/Preparation and crystal structure of KNaO and RbNaO[J]. Zeitschrift für Naturforschung B, 1982, 37(7): 818-819. [48] SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO[J]. Naturforsch, 1982, 37b: 818-819. [49] BELGHIT R, BELKHIR H, HECIRI D, et al. First principles study of structural, mechanical and electronic properties of the ternary alkali metal oxides KNaO and RbNaO[J]. Chemical Physics Letters, 2018, 706: 684-693. doi: 10.1016/j.cplett.2018.07.013 [50] SAMOILOVA O, MAKROVETS L, TROFIMOV E. Thermodynamic simulation of the phase diagram of the Cu2O–Na2O–K2O system[J]. Moscow University Chemistry Bulletin . 2018, 73(3): 105-110. [51] BELYAEV T. System NaVO3-KVO3[J]. Zh. Neorg. Khimi 13(6) (1968) 1642-1644. [52] GLAZYRIN M, IVAKIN A, YATSENKO A. Phase diagram of the NaVO3-KVO3 system[J]. Zhurnal Neorganicheskoj Khimii, 1972, 17(2): 536-538. [53] PERRAUD J. Crystallization of simple or double alkaline (Na+, K+ and Cs+) Metavandates[J]. Revue de Chimie MINERALE 11(3) (1974) 302-326. [54] БУБНОВА Р, ФИЛАТОВ С, ГРЕБЕНЩИКОВ Р. Изучение диаграмм состояния методом терморентгенографии на примере системы NaVO3-KVO3[J]. J ДАН СССР 292(1) (1987) 107. [55] LEITNER J, VOŇKA P, SEDMIDUBSKÝ D, et al. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides[J]. Thermochimica Acta, 2010, 497(1-2): 7-13. doi: 10.1016/j.tca.2009.08.002 [56] KOEHLER M F. Heats of formation of three sodium vanadates[M]. US Department of the Interior, Bureau of Mines, 1960: 230. [57] BERTRAND G L, HEPLER L G. Thermochemistry of ammonium metavanadate and sodium metavanadate[J]. Journal of Chemical Engineering Data, 1967, 12(3): 412-413. doi: 10.1021/je60034a032 [58] KING E G, WELLER W W. Low temperature heat capacities and entropies at 298.15 K of three sodium vanadates, US Government Printing Office, 1961. [59] KHODOS M Y, SLOBODIN B, FOTIEV A, et al. Enthalpy of formation of potassium vanadates[J]. Izv. Akad. Nauk SSSR, Neorg. Mater, 1980, 16(3): 502-504. [60] VDOVIN V, EDIL’BAEV A, KOZLOV V, et al. Thermodynamic analysis of the reaction of vanadium oxides with oxides of sodium, potassium, calcium, barium, and manganese[J]. Steel in Translation, 2007, 37(9): 787-791. [61] WHITE M, PARK Y, SHURVELL H, et al. The heat capacity of KVO3 from 25 to 310 K[J]. The Journal of Chemical Thermodynamics, 1987, 19(7): 765-769. [62] PEI G S, JIN X, JIAO M J, et al. Phase transitions, lattice dynamics, thermal transport, and thermodynamic properties of Mg2V2O7 from experiments and first-principle calculations[J]. Journal of Magnesium and Alloys, 2025, 13(8): 3632-3641. doi: 10.1016/j.jma.2023.11.013 [63] XIANG J Y, HUANG Q Y, LÜ X W, et al. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag[J]. Journal of Hazardous Materials, 2017, 336: 1-7. doi: 10.1016/j.jhazmat.2017.04.060 -
下载: