中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒渣高效提取冶金:Na2O-K2O-V2O5体系相平衡试验研究及热力学模型构建

裴贵尚 Sampath KumarBHARATH 李卓阳 焦梦娇 向俊一 严志明 吕学伟

裴贵尚, Sampath KumarBHARATH, 李卓阳, 焦梦娇, 向俊一, 严志明, 吕学伟. 钒渣高效提取冶金:Na2O-K2O-V2O5体系相平衡试验研究及热力学模型构建[J]. 钢铁钒钛, 2025, 46(6): 29-39, 65. doi: 10.7513/j.issn.1004-7638.2025.06.003
引用本文: 裴贵尚, Sampath KumarBHARATH, 李卓阳, 焦梦娇, 向俊一, 严志明, 吕学伟. 钒渣高效提取冶金:Na2O-K2O-V2O5体系相平衡试验研究及热力学模型构建[J]. 钢铁钒钛, 2025, 46(6): 29-39, 65. doi: 10.7513/j.issn.1004-7638.2025.06.003
PEI Guishang, Sammpath Kumar BHARATH, LI Zhuoyang, JIAO Mengjiao, XIANG Junyi, YAN Zhiming, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: Experimental phase diagram study and thermodynamic modeling of Na2O-K2O-V2O5 system[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 29-39, 65. doi: 10.7513/j.issn.1004-7638.2025.06.003
Citation: PEI Guishang, Sammpath Kumar BHARATH, LI Zhuoyang, JIAO Mengjiao, XIANG Junyi, YAN Zhiming, LÜ Xuewei. Efficient metallurgical extraction of vanadium slag: Experimental phase diagram study and thermodynamic modeling of Na2O-K2O-V2O5 system[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 29-39, 65. doi: 10.7513/j.issn.1004-7638.2025.06.003

钒渣高效提取冶金:Na2O-K2O-V2O5体系相平衡试验研究及热力学模型构建

doi: 10.7513/j.issn.1004-7638.2025.06.003
基金项目: 国家重点研发计划项目(2022YFC3901001);国家自然科学基金(U1902217)。
详细信息
    作者简介:

    裴贵尚,1993年出生,男,甘肃会宁人,博士,助理教授,主要从事热力学数据库构建及其在高温提取冶金中的应用研究,E-mail:Guishang.Pei@warwick.ac.uk

  • 中图分类号: TF044

Efficient metallurgical extraction of vanadium slag: Experimental phase diagram study and thermodynamic modeling of Na2O-K2O-V2O5 system

  • 摘要: 构建准确可靠的热力学数据库对提钒过程优化以及钒酸盐材料的制备具有重要的应用价值和指导意义。采用封闭铂金坩埚,结合X射线衍射(XRD)与差热分析(DTA)技术,证实了K2O-V2O5体系中K3V5O14为稳定存在的化合物,并试验测定了K2V8O21和KVO3的熔化温度分别为532.4 ℃和516.5 ℃。随后采用修正的准化学模型(MQM),引入溶液中第二相邻阳离子短程有序对描述吉布斯自由能的变化。基于CALPHAD框架(CALculation of PHAse Diagram,相图计算),构建了Na2O-K2O-V2O5体系的热力学模型,重现了Na2O-K2O-V2O5体系全组分范围的实验数据和热力学性质,获得了该体系中所有物相一系列自洽的热力学模型参数,最终构建了可靠的热力学数据库。进一步探讨了当前数据库在钒渣钠化焙烧提钒中的应用,明确了含钒物相的迁移规律,确定了最佳的操作温度窗口。
  • 图  1  K2O-V2O5体系产物及KVO3、K2V8O21的XRD与热分析

    (a)K2O-V2O5体系中制备样品的X射线衍射图谱;(b)KVO3样品差热分析;(c)K2V8O21样品差热分析

    Figure  1.  XRD and thermal analysis of products in the K2O-V2O5 system and of KVO3, K2V8O21

    图  2  Na2O-V2O5体系热力学优化和试验结果对比

    (a)相平衡关系;(b)化合物标准生成焓;(c)化合物298 K熵值;(d)Na2O-V2O5体系化合物比热容

    Figure  2.  The optimized phase diagram of the Na2O-V2O5 system along with experimental data

    图  3  K2O-V2O5体系热力学优化和试验结果对比

    (a)相平衡关系;(b)化合物标准生成焓;(c)化合物298 K熵值;(d)K2O-V2O5体系化合物比热容

    Figure  3.  The optimized phase diagram of the K2O-V2O5 system along with experimental data

    图  4  Na2O-K2O-V2O5体系热力学优化和试验结果对比

    (a) Na2O-K2O优化与实验结果对比;(b) ~(c) NaVO3-KVO3垂直截面热力学优化和实验结果对比;(d) Na4V2O7-K4V2O7垂直截面预测

    Figure  4.  The optimized phase diagram of the Na2O-K2O-V2O5 system along with experimental data

    图  5  预测得到K2O-Na2O-V2O5体系等温截面

    (a)600 ℃, 100 kPa;(b)700 ℃, 100 kPa;(c)800 ℃, 100 kPa;(d)900 ℃, 100 kPa

    Figure  5.  The predictive isothermal section of the Na2O-K2O-V2O5 system

    图  6  空气气氛下典型钒渣与15% Na2CO3混合焙烧稳定相含量随温度的变化

    Figure  6.  Weight of thermodynamic equilibrium phases calculated for the mixture of vanadium slag and 15% Na2CO3 at different temperatures under air conditions

    表  1  优化后的体系溶液相模型参数

    Table  1.   The optimized model parameters for liquid phase

    体 系模型参数
    Na2O-V2O5$ \Delta g_{\rm{Na -V O}}^{0 \quad 0}$=−401078.2+49T; $ \Delta g_{\rm{Na -V O}}^{1 \quad 0}$=−50000;
    $ \Delta g_{\rm{Na -V O}}^{0 \quad 1}$=−360000−74T; $ \Delta g_{\rm{Na -V O}}^{0 \quad 2}$=410000−132T;
    $ \Delta g_{\rm{Na -V O}}^{0 \quad 3}$=100000−400T;
    K2O-V2O5$ \Delta g_{\rm{K -V O}}^{0 \quad 0}$=−536881+32T; $ \Delta g_{\rm{K -V O}}^{0 \quad 1}$=−330000+50T;
    $ \Delta g_{\rm{K -V O}}^{0 \quad 2}$=26000
    Na2O- K2O-V2O5
    下载: 导出CSV

    表  2  典型钒渣化学成分[63]

    Table  2.   Chemical composition of vanadium-bearing slag[63] %

    SiO2Al2O3FeOCaOMgOTiO2MnOV2O3
    13.513.4738.533.024.0112.69.4715.37
    下载: 导出CSV
  • [1] JUNG I H, VAN ENDE M A. Computational thermodynamic calculations: FactSage from CALPHAD thermodynamic database to virtual process simulation[J]. Metallurgical and Materials Transactions B, 2020, 51(5): 1851-1874.
    [2] LIU Z K. Computational thermodynamics and its applications[J]. Acta Materialia 2020, 200: 745-792.
    [3] PEI G S, XIANG J Y, ZHONG D P, et al. Isothermal reduction of V2O5 powder using H2 as oxygen carrier: Thermodynamic evaluation, reaction sequence, and kinetic analysis[J]. Powder Technology 2021, 378: 785-794.
    [4] LEE S. A review on types of vanadium deposits and process mineralogical characteristics[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2020, 57(6): 640-651. doi: 10.32390/ksmer.2020.57.6.640
    [5] KIM S M, JEON H S. Separation processes for self-sufficient recovery of vanadium resources in Korea[J]. Journal of the Korean Society of Mineral and Energy Resources Engineers 2019, 56(3) : 292-302.
    [6] PEI G S, PAN C, ZHONG D P, et al. Crystal structure, phase transitions, and thermodynamic properties of magnesium metavanadate (MgV2O6)[J]. Journal of Magnesium and Alloys, 2024, 12(4): 1449-1460.
    [7] PEI G S, XIANG J Y, HUANG Q Y, et al. Double pyrovanadates CaMgV2O7: Formation mechanism, phase structure, and thermodynamic properties[J]. Journal of the American Ceramic Society 2022, 105(10): 6359-6369.
    [8] PEI G S, XIANG J Y, ZHONG D P, et al. A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H2 atmosphere: Thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation[J]. Journal of Alloys and Compounds, 2020, 845: 156305. doi: 10.1016/j.jallcom.2020.156305
    [9] BAE K Y, JUNG Y H, CHO S H, et al. Design and analysis of an optimal cathode for Li-LiV3O8 secondary cells[J]. Journal of Alloys and Compounds, 2019, 784 (5) 704-711.
    [10] KÖHLER J, MAKIHARA H, UEGAITO H, et al. LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1): 59-65. doi: 10.1016/S0013-4686(00)00515-6
    [11] YANG G, WANG G, HOU W. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. The Journal of Physical Chemistry B, 2005, 109(22): 11186-11196.
    [12] FENG L, ZHANG W, XU L, et al. Selecting the optimal calcination conditions for preparing LiV3O8 crystal[J]. Solid State Sciences, 2020, 103: 106187.
    [13] PAN A, LIU J, ZHANG J G, et al. Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries[J]. Journal of Materials Chemistry, 2011, 21(4): 1153-1161.
    [14] QIAO Y, TU J, WANG X, et al. Self-assembled synthesis of hierarchical waferlike porous Li–V–O composites as cathode materials for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(51): 25508-25518.
    [15] CUI C J, WU G M, SHEN J, et al. Synthesis and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(7): 2536-2541.
    [16] BALE C W, BÉLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases, 2010-2016[J]. Calphad, 2016, 54: 35-53.
    [17] PEI G S, XIANG J Y, LÜ X W, et al. High-temperature heat capacity and phase transformation kinetics of NaVO3[J]. Journal of Alloys and Compounds, 2019, 794: 465-472. doi: 10.1016/j.jallcom.2019.04.186
    [18] PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of sodium pyrovanadate (Na4V2O7) at high temperature (298.15~873 K)[J]. Calphad , 2020, 70: 101802.
    [19] PEI G S, XIANG J Y, YANG L L, et al. Thermodynamic properties of magnesium orthovanadate Mg3(VO4)2 at high temperatures (298.15~1473 K)[J]. Calphad, 2021, 74: 102295. doi: 10.1016/j.calphad.2021.102295
    [20] KIM D G, VAN ENDE M A, HUDON P, et al. Coupled experimental study and thermodynamic optimization of the K2O-SiO2 system[J]. Journal of Non-Crystalline Solids, 2017, 471: 51-64. doi: 10.1016/j.jnoncrysol.2017.04.029
    [21] PELTON A D, DEGTEROV S A, ERIKSSON G. The modified quasichemical model I—Binary solutions[J]. Metallurgical and Materials Transactions B, 2000, 31(4): 651-659.
    [22] PELTON A D, CHARTRAND P. The modified quasi-chemical model: Part II. Multicomponent solutions[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1355-1360. doi: 10.1007/s11661-001-0226-3
    [23] CAO Z, WANG N, XIE W, et al. Critical evaluation and thermodynamic assessment of the MgO-V2O5 and CaO-V2O5 systems in air[J]. Calphad, 2017, 56: 72-79. doi: 10.1016/j.calphad.2016.12.001
    [24] HUDON P, JUNG I H. Critical evaluation and thermodynamic optimization of the CaO-P2O5 system[J]. Metallurgical and Materials Transactions B, 2015, 46(1) (2015) 494-522.
    [25] CHEN Y Q, LEI L, REN Q, et al. Phase relations in the ZnO-V2O5-K2O system[J]. Chinese Physics B, 2011, 20(7): 076402. doi: 10.1088/1674-1056/20/7/076402
    [26] KELMERS A D. Compounds in the system KVO3-V2O5[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 23(3): 279-283.
    [27] GLAZYRIN M P, FOTIEV A A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87.
    [28] KOLTA G A, HEWAIDY I F. Phase diagrams of binary systems vanadium oxide-sodium carbonate and vanadium oxide-sodium sulfate [J]. Thermochim. Acta, 1972, 25(7): 327-330.
    [29] DANCK V, MATIASOVSKY K, BALAJKA J. Study of the system V2O5-Na2O[J]. Chemicke Zvesti, 1973, 27(6): 748-751.
    [30] VOLKOV F A, VALIKHANOVA V L, Valikhanova N K. Vanadium pentoxide-sodium metavanadate system[J]. Zhurnal Neorganicheskoi Khimii, 1975, 2(20): 497-500.
    [31] FLOOD S H, VANADYL H. Vanadate, a new type of semiconductor. the system Na2O-V2O5[J]. Tidsskrift for Kjemi Bergvesen og Metallurgi 3 (1943): 55-59.
    [32] ILLARIONOV V V, OZEROV R P, KILDILDISHEVA E V. Phase diagrams for the system V2O5-Na2SO4 and V2O5-NaVO3[J]. Zhurnal Neorganicheskoi Khimii, 2 (1957): 883-889.
    [33] KERBY R, WILSON J. Solid–liquid phase equilibria for the ternary systems V2O5–Na2O–Fe2O3, V2O5–Na2O–Cr2O3, and V2O5–Na2O–MgO[J]. Canadian Journal of Chemistry, 1973, 51(7): 1032-1040. doi: 10.1139/v73-153
    [34] LÜ X W, PEI G S, ZHONG D P, et al. Phase equilibrium of the V2O5–Na2O system[J]. Metallurgical and Materials Transactions B, 2022, 53(4): 2695-2703. doi: 10.1007/s11663-022-02560-z
    [35] SLOBODIN B, FOTIEY A. Phase composition and some features of the vanadium pentoxide-sodium metavanadate system[J]. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1968, 4(1): 82-87.
    [36] DANEK V, VOTAVA I, MATIASOVSKY K. Study of the system V2O5-Na2O. Ⅱ[J]. Chemicke Zvesti, 1974 28(6): 728-732.
    [37] GOLOVKIN B, KRISTALLOV L, KRUCHININA M. Phase diagram of NaVO3-Na4V2O7 system[J]. Zhurnal Neorganicheskoj Khimii, 1995, 40(3): 514-518.
    [38] CANNERI G. Sui vanadicovanadati[J]. Gazz. chim. ital, 1928, 58 : 6.
    [39] HOLTZBERG F, REISMAN A, BERRY M. Reactions of the group VB pentoxides with alkali oxides and carbonates. II. phase diagram of the system K2CO3-V2O5[J]. Journal of the American Chemical Society, 1956, 78(8): 1536-1540. doi: 10.1021/ja01589a007
    [40] KATO A, MOCHIDA I, SEIYAMA T. X-Ray powder patterns of K2O.4V2O5 and K2O.V2O4.8V2O5[J]. Analytica Chimica Acta, 1971, 54(1): 168-170.
    [41] ILLARIONOV V, OZEROV R, KILDISHEVA E. The system K2O-V2O5 in the region KVO3-V2O5[J]. Journal of Inorganic Chemistry -USSR, 1956, 1(4): 177-182.
    [42] BLOCK S. The Crystal Structure of K2V6O16[D]. Baltimore: Johns Hopkins University, 1955.
    [43] KELMERS A D. Ammonium, potassium, rubidium and cesium hexavanadates[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 21(1): 45-48.
    [44] EVANS H T, BLOCK S. The crystal structures of potassium and cesium trivanadates[J]. Inorganic Chemistry, 1966, 5(10): 1808-1814. doi: 10.1021/ic50044a037
    [45] OKA Y, YAO T, YAMAMOTO N. Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs)[J]. Materials Research Bulletin, 1997, 32(9): 1201-1209. doi: 10.1016/S0025-5408(97)00096-2
    [46] PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) system and its applications[D]. Chongqing: Chongqing University, 2023.
    [47] SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO/Preparation and crystal structure of KNaO and RbNaO[J]. Zeitschrift für Naturforschung B, 1982, 37(7): 818-819.
    [48] SABROWSKY H, SCHRÖER U. Darstellung und kristallstruktur von KNaO und RbNaO[J]. Naturforsch, 1982, 37b: 818-819.
    [49] BELGHIT R, BELKHIR H, HECIRI D, et al. First principles study of structural, mechanical and electronic properties of the ternary alkali metal oxides KNaO and RbNaO[J]. Chemical Physics Letters, 2018, 706: 684-693. doi: 10.1016/j.cplett.2018.07.013
    [50] SAMOILOVA O, MAKROVETS L, TROFIMOV E. Thermodynamic simulation of the phase diagram of the Cu2O–Na2O–K2O system[J]. Moscow University Chemistry Bulletin . 2018, 73(3): 105-110.
    [51] BELYAEV T. System NaVO3-KVO3[J]. Zh. Neorg. Khimi 13(6) (1968) 1642-1644.
    [52] GLAZYRIN M, IVAKIN A, YATSENKO A. Phase diagram of the NaVO3-KVO3 system[J]. Zhurnal Neorganicheskoj Khimii, 1972, 17(2): 536-538.
    [53] PERRAUD J. Crystallization of simple or double alkaline (Na+, K+ and Cs+) Metavandates[J]. Revue de Chimie MINERALE 11(3) (1974) 302-326.
    [54] БУБНОВА Р, ФИЛАТОВ С, ГРЕБЕНЩИКОВ Р. Изучение диаграмм состояния методом терморентгенографии на примере системы NaVO3-KVO3[J]. J ДАН СССР 292(1) (1987) 107.
    [55] LEITNER J, VOŇKA P, SEDMIDUBSKÝ D, et al. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides[J]. Thermochimica Acta, 2010, 497(1-2): 7-13. doi: 10.1016/j.tca.2009.08.002
    [56] KOEHLER M F. Heats of formation of three sodium vanadates[M]. US Department of the Interior, Bureau of Mines, 1960: 230.
    [57] BERTRAND G L, HEPLER L G. Thermochemistry of ammonium metavanadate and sodium metavanadate[J]. Journal of Chemical Engineering Data, 1967, 12(3): 412-413. doi: 10.1021/je60034a032
    [58] KING E G, WELLER W W. Low temperature heat capacities and entropies at 298.15 K of three sodium vanadates, US Government Printing Office, 1961.
    [59] KHODOS M Y, SLOBODIN B, FOTIEV A, et al. Enthalpy of formation of potassium vanadates[J]. Izv. Akad. Nauk SSSR, Neorg. Mater, 1980, 16(3): 502-504.
    [60] VDOVIN V, EDIL’BAEV A, KOZLOV V, et al. Thermodynamic analysis of the reaction of vanadium oxides with oxides of sodium, potassium, calcium, barium, and manganese[J]. Steel in Translation, 2007, 37(9): 787-791.
    [61] WHITE M, PARK Y, SHURVELL H, et al. The heat capacity of KVO3 from 25 to 310 K[J]. The Journal of Chemical Thermodynamics, 1987, 19(7): 765-769.
    [62] PEI G S, JIN X, JIAO M J, et al. Phase transitions, lattice dynamics, thermal transport, and thermodynamic properties of Mg2V2O7 from experiments and first-principle calculations[J]. Journal of Magnesium and Alloys, 2025, 13(8): 3632-3641. doi: 10.1016/j.jma.2023.11.013
    [63] XIANG J Y, HUANG Q Y, LÜ X W, et al. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag[J]. Journal of Hazardous Materials, 2017, 336: 1-7. doi: 10.1016/j.jhazmat.2017.04.060
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-31
  • 录用日期:  2025-11-25
  • 修回日期:  2025-11-25
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回