Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method
-
摘要: 针对传统偏钒酸铵制备工艺存在的流程冗长、成本高昂等问题,基于钒酸根离子在不同pH条件下的形态转化特性,创新性地提出通过精确调控介质pH值实现多钒酸根(V10O286−)向偏钒酸根(VO3−)的直接转化。在此过程中,杂质元素(Na、K、Cr、As)分别以Na+、K+、CrO42−、HAsO42−等离子形态进入溶液相,实现了偏钒酸铵制备过程中的杂质协同去除。系统研究了转型反应温度、pH值和液固比对钒回收率及产品纯度的影响机制,试验结果表明:当体系pH≥8时,可实现V10O286−向VO3−的完全转化;较低的反应温度有利于偏钒酸铵的结晶析出,从而提高钒回收率;液固比的增加虽有利于提高转化效率,但过高的液固比会导致钒回收率降低和资源浪费。通过优化试验确定了最佳工艺参数:反应温度30 ℃,pH值8.5,液固比7~10。在此条件下,纯度98%的工业级多钒酸铵可直接转化为偏钒酸铵并结晶析出,所得产品纯度达99.75%,钒回收率为90.67%,成功实现了纯度≥99.5%偏钒酸铵的一步法制备。该方法显著简化了传统工艺流程,为高效制备高纯度偏钒酸铵提供了新的技术途径。Abstract: In response to the issues of lengthy process and high cost associated with traditional ammonium metavanadate preparation methods, this study proposes an innovative approach based on the pH-dependent speciation transformation characteristics of vanadate ions. By precisely controlling the pH of the medium, direct conversion of decavanadate (V10O286−) to metavanadate (VO3−) was achieved. During this process, impurity elements (Na, K, Cr, As) were effectively removed through their transformation into ionic forms (Na+, K+, CrO42−, HAsO42−) in the solution phase, enabling simultaneous impurity control in ammonium metavanadate preparation. The effects of transformation temperature, pH, and liquid-to-solid ratio on vanadium recovery and product purity were systematically investigated. Experimental results demonstrated that complete conversion of V10O286− to VO3− could be achieved at pH monstrated that complete conversiwere found to favor the crystallization of ammonium metavanadate, thereby enhancing vanadium recovery. While increasing the liquid-to-solid ratio improved conversion efficiency, excessive ratios led to reduced vanadium recovery and resource wastage. Through optimization experiments, the optimal process parameters were set: reaction temperature of 30 ℃, pH of 8.5, and liquid-to-solid ratio of 7–10. Under these conditions, industrial-grade ammonium decavanadate with 98% purity was directly converted to crystallized ammonium metavanadate, yielding a product with 99.75% purity and achieving a vanadium recovery rate of 90.67%. This method successfully realized one-step preparation of ammonium metavanadate with purity of 99.5%. This method significantly simplifies the traditional process flow and provides a new technical approach for the efficient preparation of high-purity ammonium metavanadate.
-
Key words:
- ammonium polyvanadate /
- ammonium metavanadate /
- pH value /
- selectivity /
- purification
-
表 1 原料多钒酸铵中杂质成分含量
Table 1. Impurity content in ammonium decavanadate
% Purity As Cr Fe Ca Ti Al Na K Mg 98.32 0.04 0.058 0.062 0.05 0.02 0.07 0.11 0.18 0.03 表 2 转型前后固相杂质成分
Table 2. Solid impurity compositions before and after transformation
% Samples Purity As Fe Cr Ca Ti Al Na K Mg Ammonium decavanadate 98.20 0.04 0.062 0.058 0.05 0.02 0.07 0.11 0.18 0.03 Ammonium metavanadate 99.75 0.03 0.04 0.02 0.01 0.01 0.03 0.00 0.03 0.01 -
[1] KONG H Y, XIE Q F, WU C L, et al. Vanadium-based alloy for hydrogen storage: a review[J]. Rare Metals, 2024, 43(12): 6201-6232. doi: 10.1007/s12598-024-02839-x [2] WANG J, YU W H, XIANG J Y, et al. Toward high-purity vanadium-based materials: Fundamentals, purifications, and perspectives[J]. Journal of Cleaner Production, 2024, 476: 143721. doi: 10.1016/j.jclepro.2024.143721 [3] SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. (孙强强, 陈子璇, 杨子玥, 等. 金属镍铜钒氧化物的高效电解产氢性能[J]. 无机材料学报, 2023, 38(6): 647-655.SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. [4] WANG C, LI L J, DU H. Cleaner production of 3.5 valent vanadium electrolyte from ammonium metavanadate by ammonia reduction-sulfuric acid dissolution method[J]. Tungsten, 2024, 6(3): 555-560. doi: 10.1007/s42864-023-00249-7 [5] XIANG J Y, BAI L W, LU X, et al. Selective recovery of vanadium from high-chromium vanadium slag by a mechanically activated low-sodium salt roasting-water leaching process[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111304. doi: 10.1016/j.jece.2023.111304 [6] ZHENG H W, LI Q N, LING Y Q, et al. Research on microwave drying technology in the procedure of preparation of V2O5 from ammonium polyvanadate (APV)[J]. Advanced Powder Technology, 2021, 32(7): 2530-2542. doi: 10.1016/j.apt.2021.05.027 [7] PU J, GAO L, YANG Z, et al. The application of microwave irradiation technology on the preparation of V2O5 from ammonium polyvanadate (APV)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 1-7. doi: 10.1016/j.jtice.2020.02.010 [8] CHEN X M, LI H Y, WEI C C, et al. Selective chemical etching of vanadium slag enables highly efficient and clean extraction of vanadium[J]. Acs Sustainable Chemistry & Engineering, 2025, 13(3): 1327-1335. [9] AN Y R, MA B Z, ZHOU Z E, et al. Extraction of vanadium from vanadium slag by sodium roasting-ammonium sulfate leaching and removal of impurities from weakly alkaline leach solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110458. doi: 10.1016/j.jece.2023.110458 [10] WEN J, JIANG T, XU Y Z, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043 [11] GUO Y, LI H Y, CHENG J, et al. Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag[J]. Separation and Purification Technology, 2021, 263: 118296. [12] FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. (冯国晟. 制备高品质多钒酸铵工艺参数优化与研究[J]. 世界有色金属, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069 [13] FOUDA M, SALEH H, ABD-ELZAHER M, et al. The reactivity of products of thermal interaction between ammonium vanadate and potassium sulfite as catalysts for oxidation of sulfur dioxide[J]. Applied Catalysis A: General, 2002, 223(1-2): 11-27. doi: 10.1016/S0926-860X(01)00661-5 [14] ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. (曾帅强, 王建业, 李鹏飞, 等. 偏钒酸铵等黏性物料用螺旋输送机结构设计[J]. 纯碱工业, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008 [15] KOKKO M, HU T, LASSI U, et al. A study of direct NH4VO3 crystallization from dilute V solutions and the effect of impurities (Fe, Mn) on crystallization[J]. Waste and Biomass Valorization, 2025, 1-14. [16] KOKKO M, KAUPPINEN T, HU T, et al. Two-stage leaching of calcium and vanadium from high-calcium steelmaking slag[J]. Environmental Technology, 2024, 45(27): 5966-5981. doi: 10.1080/09593330.2024.2316671 [17] LI Q G, ZHANG Q X, ZENG L, et al. Removal of vanadium from ammonium molybdate solution by ion exchange[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 735-739. doi: 10.1016/S1003-6326(08)60342-8 [18] JING X H, WANG J Y, CAO H B, et al. Rapid selective extraction of V(V) from leaching solution using annular centrifugal contactors and stripping for NH4VO3[J]. Separation and Purification Technology, 2017, 187: 407-414. doi: 10.1016/j.seppur.2017.06.078 [19] WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. (王少娜, 杜浩, 郑诗礼, 等. 钒酸钠钙化-碳化铵沉法清洁制备钒氧化物新工艺[J]. 化工学报, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511 [20] JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. (贾美丽, 杜浩, 张懿, 等. 失活硫酸催化剂两步法选择性清洁提钒研究[J]. 钢铁钒钛, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002 [21] WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15. (王少娜, 杜浩, 贾美丽, 等. 高纯V2O5制备工艺研究进展[J]. 河北冶金, 2021(8): 9-15.WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15. [22] AURELIANO M, CRANS D. Decavanadate (V10O286−) and oxovanadates: Oxometalates with many biological activities[J]. Journal of Inorganic Biochemistry, 2009, 103(4): 536-546. doi: 10.1016/j.jinorgbio.2008.11.010 [23] LI H D, SONG H, YANG Y K, et al. One-time removal of V(Ⅴ) and Cr(Ⅵ) from aqueous solution of different pH by sulphate green rust: The overlooked adsorption and reactivity of Fe (Ⅲ)-Cr(Ⅲ) oxides[J]. Separation and Purification Technology, 2025, 354. [24] KEIM M, MARKL G. Formation of galena pseudomorphs after pyromorphite[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2017, 194(3): 209-226. doi: 10.1127/njma/2017/0058 [25] HUANG R, LUO L, HU W, et al. Insight into the pH effect on the oxygen species and Mn chemical valence of Co-Mn catalysts for total toluene oxidation[J]. Catalysis Science & Technology, 2022, 12(13): 4157-4168. [26] GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018. (郭雪梅. 偏钒酸铵冷却结晶分离的应用基础研究[D]. 天津: 天津大学, 2018.GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018. [27] PENG H. A literature review on leaching and recovery of vanadium[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103313. doi: 10.1016/j.jece.2019.103313 [28] XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. (徐海, 郦和生, 王岽. 硫酸钙结晶过程及其影响因素研究[J]. 工业水处理, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019 -
下载: