中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转型法制备高纯偏钒酸铵过程杂质协同控制研究

贾美丽 王宝华 杜浩 胡飞飞 刘金玉 祁健 赵备备

贾美丽, 王宝华, 杜浩, 胡飞飞, 刘金玉, 祁健, 赵备备. 转型法制备高纯偏钒酸铵过程杂质协同控制研究[J]. 钢铁钒钛, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005
引用本文: 贾美丽, 王宝华, 杜浩, 胡飞飞, 刘金玉, 祁健, 赵备备. 转型法制备高纯偏钒酸铵过程杂质协同控制研究[J]. 钢铁钒钛, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005
JIA Meili, WANG Baohua, DU Hao, HU Feifei, LIU Jinyu, QI Jian, ZHAO Beibei. Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005
Citation: JIA Meili, WANG Baohua, DU Hao, HU Feifei, LIU Jinyu, QI Jian, ZHAO Beibei. Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 47-56. doi: 10.7513/j.issn.1004-7638.2025.06.005

转型法制备高纯偏钒酸铵过程杂质协同控制研究

doi: 10.7513/j.issn.1004-7638.2025.06.005
基金项目: 河北省省级科技计划资助项目(23311501D); 河钢集团重点科技项目(HG2023220)。
详细信息
    作者简介:

    贾美丽,1991年出生,女,山西吕梁人,博士,研究方向为钒资源的分离与提取,E-mail:18216405130@163.com

    通讯作者:

    刘金玉,1979年出生,女,河北承德人,硕士,副教授,研究方向为湿法冶金提钒,E-mail:15903141083@163.com

  • 中图分类号: TF841.3

Collaborative control of impurities in preparation of high-purity ammonium metavanadate by transition method

  • 摘要: 针对传统偏钒酸铵制备工艺存在的流程冗长、成本高昂等问题,基于钒酸根离子在不同pH条件下的形态转化特性,创新性地提出通过精确调控介质pH值实现多钒酸根(V10O286−)向偏钒酸根(VO3)的直接转化。在此过程中,杂质元素(Na、K、Cr、As)分别以Na+、K+、CrO42−、HAsO42−等离子形态进入溶液相,实现了偏钒酸铵制备过程中的杂质协同去除。系统研究了转型反应温度、pH值和液固比对钒回收率及产品纯度的影响机制,试验结果表明:当体系pH≥8时,可实现V10O286−向VO3的完全转化;较低的反应温度有利于偏钒酸铵的结晶析出,从而提高钒回收率;液固比的增加虽有利于提高转化效率,但过高的液固比会导致钒回收率降低和资源浪费。通过优化试验确定了最佳工艺参数:反应温度30 ℃,pH值8.5,液固比7~10。在此条件下,纯度98%的工业级多钒酸铵可直接转化为偏钒酸铵并结晶析出,所得产品纯度达99.75%,钒回收率为90.67%,成功实现了纯度≥99.5%偏钒酸铵的一步法制备。该方法显著简化了传统工艺流程,为高效制备高纯度偏钒酸铵提供了新的技术途径。
  • 图  1  As、Cr、V等在不同pH值溶液中的存在状态(25 ℃)

    (a) V、As 和 Cr在不同pH值下的离子形态分布; (b) 杂质As、Cr、Mn、P、 Na、K在pH 值为7~10范围的离子分布

    Figure  1.  The existence of As, Cr, V, etc. in solution at different pH values (25 ℃)

    图  2  多钒酸铵转型制备偏钒酸铵示意

    Figure  2.  Schematic diagram of the conversion of ammonium polyvanadate to ammonium metavanadate

    图  3  多钒酸铵原料XRD图谱

    Figure  3.  XRD pattern of ammonium polyvanadate

    图  4  多钒酸铵转型制备偏钒酸铵工艺流程

    Figure  4.  Process flow chart of the transformation of ammonium polyvanadate to ammonium metavanadate

    图  5  转型溶液中各元素浓度随温度变化

    Figure  5.  The concentration change of elements in solution at different temperatures

    图  6  不同温度下转型产物XRD结果

    Figure  6.  XRD patterns of transition products at different temperatures

    图  7  不同温度下转型产物中杂质含量

    Figure  7.  Impurity content in transition products at different temperatures

    图  8  不同温度下转型产物偏钒酸铵纯度及钒的收得率

    Figure  8.  Purity of ammonium metavanadate and yield of vanadium at different temperatures

    图  9  不同pH值下转型溶液各成分浓度

    Figure  9.  The concentration of solution at different pH values

    图  10  不同pH值下转型产物的XRD图谱

    Figure  10.  XRD patterns of transition products at different pH values

    图  11  不同pH值得到的转型产物中的杂质含量

    Figure  11.  Impurity contents in transition products at different pH values

    图  12  在不同pH值下NH4VO3的纯度及钒的收得率

    Figure  12.  Purity of NH4VO3 and transition rate of vanadium at different pH values

    图  13  转型溶液中各元素浓度随液固比变化

    Figure  13.  The concentration of each element in the solution varying with different liquid-solid ratios

    图  14  不同液固比下转型产物的XRD图谱

    Figure  14.  XRD patterns of transition products at different liquid-solid ratios

    图  15  偏钒酸铵产物中杂质含量与液固比的关系

    Figure  15.  Relationship between impurity content and liquid-solid ratio in NH4VO3 products

    图  16  偏钒酸铵产物纯度及钒收得率与液固比的关系

    Figure  16.  Effects of liquid-solid ratio on the purity of products and V transition rate

    图  17  转型产物的表征

    (a) XRD图谱; (b) SEM形貌

    Figure  17.  XRD pattern and SEM image of a typical transformation product

    表  1  原料多钒酸铵中杂质成分含量

    Table  1.   Impurity content in ammonium decavanadate %

    PurityAsCrFeCaTiAlNaKMg
    98.320.040.0580.0620.050.020.070.110.180.03
    下载: 导出CSV

    表  2  转型前后固相杂质成分

    Table  2.   Solid impurity compositions before and after transformation %

    SamplesPurityAsFeCrCaTiAlNaKMg
    Ammonium decavanadate98.200.040.0620.0580.050.020.070.110.180.03
    Ammonium metavanadate99.750.030.040.020.010.010.030.000.030.01
    下载: 导出CSV
  • [1] KONG H Y, XIE Q F, WU C L, et al. Vanadium-based alloy for hydrogen storage: a review[J]. Rare Metals, 2024, 43(12): 6201-6232. doi: 10.1007/s12598-024-02839-x
    [2] WANG J, YU W H, XIANG J Y, et al. Toward high-purity vanadium-based materials: Fundamentals, purifications, and perspectives[J]. Journal of Cleaner Production, 2024, 476: 143721. doi: 10.1016/j.jclepro.2024.143721
    [3] SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. (孙强强, 陈子璇, 杨子玥, 等. 金属镍铜钒氧化物的高效电解产氢性能[J]. 无机材料学报, 2023, 38(6): 647-655.

    SUN Q Q, CHEN Z X, YANG Z Y, et al. Amorphous vanadium oxide loaded by metallic nickel-copper towards high-efficiency electrocatalyzing hydrogen production[J]. Journal of Inorganic Materials, 2023, 38(6): 647-655.
    [4] WANG C, LI L J, DU H. Cleaner production of 3.5 valent vanadium electrolyte from ammonium metavanadate by ammonia reduction-sulfuric acid dissolution method[J]. Tungsten, 2024, 6(3): 555-560. doi: 10.1007/s42864-023-00249-7
    [5] XIANG J Y, BAI L W, LU X, et al. Selective recovery of vanadium from high-chromium vanadium slag by a mechanically activated low-sodium salt roasting-water leaching process[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111304. doi: 10.1016/j.jece.2023.111304
    [6] ZHENG H W, LI Q N, LING Y Q, et al. Research on microwave drying technology in the procedure of preparation of V2O5 from ammonium polyvanadate (APV)[J]. Advanced Powder Technology, 2021, 32(7): 2530-2542. doi: 10.1016/j.apt.2021.05.027
    [7] PU J, GAO L, YANG Z, et al. The application of microwave irradiation technology on the preparation of V2O5 from ammonium polyvanadate (APV)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109: 1-7. doi: 10.1016/j.jtice.2020.02.010
    [8] CHEN X M, LI H Y, WEI C C, et al. Selective chemical etching of vanadium slag enables highly efficient and clean extraction of vanadium[J]. Acs Sustainable Chemistry & Engineering, 2025, 13(3): 1327-1335.
    [9] AN Y R, MA B Z, ZHOU Z E, et al. Extraction of vanadium from vanadium slag by sodium roasting-ammonium sulfate leaching and removal of impurities from weakly alkaline leach solution[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110458. doi: 10.1016/j.jece.2023.110458
    [10] WEN J, JIANG T, XU Y Z, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043
    [11] GUO Y, LI H Y, CHENG J, et al. Highly efficient separation and recovery of Si, V, and Cr from V-Cr-bearing reducing slag[J]. Separation and Purification Technology, 2021, 263: 118296.
    [12] FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. (冯国晟. 制备高品质多钒酸铵工艺参数优化与研究[J]. 世界有色金属, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069

    FENG G S. Optimization and study on process parameters for preparation of high quality ammonium polyvanadate[J]. World Nonferrous Metals, 2020(24): 148-149. doi: 10.3969/j.issn.1002-5065.2020.24.069
    [13] FOUDA M, SALEH H, ABD-ELZAHER M, et al. The reactivity of products of thermal interaction between ammonium vanadate and potassium sulfite as catalysts for oxidation of sulfur dioxide[J]. Applied Catalysis A: General, 2002, 223(1-2): 11-27. doi: 10.1016/S0926-860X(01)00661-5
    [14] ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. (曾帅强, 王建业, 李鹏飞, 等. 偏钒酸铵等黏性物料用螺旋输送机结构设计[J]. 纯碱工业, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008

    ZENG S Q, WANG J Y, LI P F, et al. Structural design of screw conveyor for viscous material such as ammonium metavanadate[J]. Soda Industry, 2024(2): 22-24. doi: 10.3969/j.issn.1005-8370.2024.02.008
    [15] KOKKO M, HU T, LASSI U, et al. A study of direct NH4VO3 crystallization from dilute V solutions and the effect of impurities (Fe, Mn) on crystallization[J]. Waste and Biomass Valorization, 2025, 1-14.
    [16] KOKKO M, KAUPPINEN T, HU T, et al. Two-stage leaching of calcium and vanadium from high-calcium steelmaking slag[J]. Environmental Technology, 2024, 45(27): 5966-5981. doi: 10.1080/09593330.2024.2316671
    [17] LI Q G, ZHANG Q X, ZENG L, et al. Removal of vanadium from ammonium molybdate solution by ion exchange[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 735-739. doi: 10.1016/S1003-6326(08)60342-8
    [18] JING X H, WANG J Y, CAO H B, et al. Rapid selective extraction of V(V) from leaching solution using annular centrifugal contactors and stripping for NH4VO3[J]. Separation and Purification Technology, 2017, 187: 407-414. doi: 10.1016/j.seppur.2017.06.078
    [19] WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. (王少娜, 杜浩, 郑诗礼, 等. 钒酸钠钙化-碳化铵沉法清洁制备钒氧化物新工艺[J]. 化工学报, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511

    WANG S N, DU H, ZHENG S L, et al. New technology from sodium vanadate to vanadium oxide by calcification and carbonization-ammonium process[J]. CIESC Journal, 2017, 68(7): 2781-2789. doi: 10.11949/j.issn.0438-1157.20161511
    [20] JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. (贾美丽, 杜浩, 张懿, 等. 失活硫酸催化剂两步法选择性清洁提钒研究[J]. 钢铁钒钛, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002

    JIA M L, DU H, ZHANG Y, et al. Research on the vanadium extraction from deactivated sulfuric acid catalyst featured with two-step and selectively[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 9-16. doi: 10.7513/j.issn.1004-7638.2024.05.002
    [21] WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15. (王少娜, 杜浩, 贾美丽, 等. 高纯V2O5制备工艺研究进展[J]. 河北冶金, 2021(8): 9-15.

    WANG S N, DU H, JIA M L, et al. Study advances on preparation technology of high purity V2O5[J]. Hebei Metallurgy, 2021(8): 9-15.
    [22] AURELIANO M, CRANS D. Decavanadate (V10O286−) and oxovanadates: Oxometalates with many biological activities[J]. Journal of Inorganic Biochemistry, 2009, 103(4): 536-546. doi: 10.1016/j.jinorgbio.2008.11.010
    [23] LI H D, SONG H, YANG Y K, et al. One-time removal of V(Ⅴ) and Cr(Ⅵ) from aqueous solution of different pH by sulphate green rust: The overlooked adsorption and reactivity of Fe (Ⅲ)-Cr(Ⅲ) oxides[J]. Separation and Purification Technology, 2025, 354.
    [24] KEIM M, MARKL G. Formation of galena pseudomorphs after pyromorphite[J]. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 2017, 194(3): 209-226. doi: 10.1127/njma/2017/0058
    [25] HUANG R, LUO L, HU W, et al. Insight into the pH effect on the oxygen species and Mn chemical valence of Co-Mn catalysts for total toluene oxidation[J]. Catalysis Science & Technology, 2022, 12(13): 4157-4168.
    [26] GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018. (郭雪梅. 偏钒酸铵冷却结晶分离的应用基础研究[D]. 天津: 天津大学, 2018.

    GUO X M. Applied fundamental research on the cooling crystallization of ammonium metavanadate[D]. Tianjin: Tianjin University, 2018.
    [27] PENG H. A literature review on leaching and recovery of vanadium[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103313. doi: 10.1016/j.jece.2019.103313
    [28] XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. (徐海, 郦和生, 王岽. 硫酸钙结晶过程及其影响因素研究[J]. 工业水处理, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019

    XU H, LI H S, WANG D. Study on CaSO4 crystallization process and its influential factors[J]. Industrial Water Treatment, 2011, 31(5): 67-69. doi: 10.3969/j.issn.1005-829X.2011.05.019
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 录用日期:  2025-05-16
  • 修回日期:  2025-05-08
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回