Multi-component leaching behavior and influence rule of calcified vanadium slag in acid leaching process
-
摘要: 系统研究了钒渣MFe含量、焙烧过程钙钒比和焙烧温度、浸出pH值对V和杂质组元Mn、Fe、Cr、Mg、Ti、Si浸出行为的影响规律。研究结果表明:降低钒渣中MFe含量、钙钒比(n(CaCO3)/n(V2O3))取1.0、焙烧温度升高至900 ℃、浸出pH设置为2.8,V浸出率可达91.68%。Mn和Mg的浸出率变化趋势相似,随MFe含量增加、钙钒比增大而降低;在焙烧温度800~950 ℃、浸出pH值 2.2~3.0的范围内,浸出率基本稳定,分别约38%和20%。Fe浸出率与MFe含量协同变化,高温焙烧和高pH值可抑制其浸出;受钙钒比影响甚微,均低于0.04%。Cr、Ti和Si浸出率均随MFe含量增加和焙烧温度升高而降低;Cr基本不随钙钒比的变化而变化,而Ti和Si随钙钒比增大呈升高趋势;浸出pH值的影响各异,Si浸出率随pH值升高而降低,而Ti反之升高,Cr浸出率稳定在0.1%左右。Abstract: The effects of MFe content in vanadium slag, Ca/V molar ratio (n(CaCO3)/n(V2O3)), roasting temperature, and leaching pH on the leaching behavior of vanadium (V) and impurities (Mn, Fe, Cr, Mg, Ti, Si) were systematically investigated. The results show that V leaching efficiency can reach 91.68% under a condition of low MFe content, a Ca/V molar ratio of 1.0, roasting temperature of 900 ℃, and leaching pH of 2.8. The leaching efficiencies of Mn and Mg exhibit a similar trend: decreasing with the increase of MFe content or Ca/V ratio; being relatively stable at approximately 38% and 20%, respectively, in the roasting temperature range of 800-950℃ and leaching pH range of 2.2-3.0. Fe leaching efficiency correlates directly with MFe content and is suppressed by high roasting temperatures and high leaching pH; it is minimally affected by the Ca/V ratio and remains below 0.04%. The leaching efficiencies of Cr, Ti, and Si all decrease with the increase of MFe content or roasting temperature; Cr leaching rate remains unaffected by the changes in the Ca/V ratio, while those of Ti and Si increase with a higher Ca/V ratio. Regarding leaching pH: Si leaching efficiency decreases with the increase of pH, and Ti leaching efficiency decreases, while Cr leaching efficiency remains stable at around 0.1%.
-
Key words:
- vanadium slag /
- V leaching rate /
- impurity components /
- leaching rule
-
表 1 钒渣和磁性物化学成分
Table 1. Chemical compositions of vanadium slag and magnetic material
% MFe FeO V2O3 MnO CaO TiO2 Cr2O3 SiO2 MgO Total Vanadium slag 2.81 35.19 12.46 7.71 2.13 11.1 1.53 14.22 4.72 91.87 Magnetic material 34.48 32.77 7.21 4.73 1.15 6.65 0.99 8.76 1.82 98.55 表 2 不同MFe含量钒渣焙烧熟料EDS点分析 (原子比)
Table 2. EDS point analysis of roasted vanadium slag with different MFe content (atomic ratio)
% Point Mg Al Si Ca Ti V Cr Mn Fe 1 2.94 0.75 1.92 10.4 0.25 18.26 0.11 6.01 1.72 2 2.5 0.82 1.45 8.44 2.52 13.64 0.12 4.6 4.81 3 1.01 0.66 2.34 11.52 1.95 18.7 0.45 5.73 8.45 4 2.56 0.64 1.44 7.93 1.63 12.08 0.26 3.85 7.61 -
[1] LI H Y, FANG H X, WANG K, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015, 156: 124-135. doi: 10.1016/j.hydromet.2015.06.003 [2] LIU S G, CHEN Y, YU S, et al. Rapid vnadium extraction from roasted vanadium steel slag via a H2SO4-H2O2 system: Process and mechanism[J]. ACS Omega, 2022, 7: 25580-25589. doi: 10.1021/acsomega.2c02744 [3] CHEN B J, JIANG T, WEN J, et al. High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(3): 498-507. doi: 10.1007/s12613-023-2719-1 [4] DING M T. Utilization of vanadium extraction from vanadium-bearing steel slag[J]. IOP Conference Series: Earth and Environmental Science, 2021, 631(1): 012056. doi: 10.1088/1755-1315/631/1/012056 [5] YU T X, JIANG T, WEN J, et al. Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(12): 2144-2151. doi: 10.1007/s12613-021-2334-y [6] XIANG J Y, LU X, RAO H R, et al. Competitive extraction behaviors of vanadium and chromium in the sodium roasting-water leaching process[J]. Separation and Purification Technology, 2025, 363: 132296. doi: 10.1016/j.seppur.2025.132296 [7] PENG H, ZHOU Q, LIU H P, et al. Research progress on vanadium extraction technology from vanadium slag[J]. Acta Petrologica Et Mineralogica, 2025, 44(1): 216-226. (彭浩, 周巧, 刘华平, 等. 钒渣提钒技术研究进展[J]. 岩石矿物学杂志, 2025, 44(1): 216-226.PENG H, ZHOU Q, LIU H P, et al. Research progress on vanadium extraction technology from vanadium slag[J]. Acta Petrologica Et Mineralogica, 2025, 44(1): 216-226. [8] LIU W Z, WANG Z H, CAO W, et al. Green and efficient separation of vanadium and chromium from high-chromium vanadium slag: a review of recent developments[J]. Green Chemistry, 2024, 26: 10006. doi: 10.1039/D4GC02192D [9] YE L, DU G C, LI Y P, et al. Analysis of the effect of manganese on vanadium slag calcification and vanadium extraction[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 38-44. (叶露, 杜光超, 李月鹏, 等. 锰对钒渣钙化提钒的影响分析[J]. 钢铁钒钛, 2022, 43(6): 38-44. doi: 10.7513/j.issn.1004-7638.2022.06.006YE L, DU G C, LI Y P, et al. Analysis of the effect of manganese on vanadium slag calcification and vanadium extraction[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 38-44. doi: 10.7513/j.issn.1004-7638.2022.06.006 [10] SHI Z X, LIU J Y. Discussion on the mineralogical characteristics of phase in the process of vanadium slag roasting[J]. Metallurgical Analysis, 2014, 34(7). 12-17. (史志新, 刘锦燕. 钒渣焙烧过程中物相的矿物学特征探讨[J]. 冶金分析, 2024, 34(7): 12-17.SHI Z X, LIU J Y. Discussion on the mineralogical characteristics of phase in the process of vanadium slag roasting[J]. Metallurgical Analysis, 2014, 34(7). 12-17. [11] HUI X J, ZHANG J H, LIANG Y, et al. Comparison and evaluation of vanadium extraction from the calcification roasted vanadium slag with carbonation leaching and sulfuric acid leaching[J]. Separation and Purification Technology, 2022, 297. [12] ZHANG L, ZHANG T, FU N X, et al. Thermodynamic evaluation on calcified roasting of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148. (张林, 张涛, 付念新, 等. 钒渣钙化焙烧热分析及物相转变机理分析[J].中国有色冶金, 2024, 53(4): 142-148.ZHANG L, ZHANG T, FU N X, et al. Thermodynamic evaluation on calcified roasting of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148. [13] GAO J, FU Z B. Discussion on phase variation characteristics of vanadium slag in low calcified-roasting[J]. Metallurgical Analysis, 2023, 43(10): 67-74. (高健, 付自碧. 钒渣低钙化焙烧的物相变化特征探讨[J]. 冶金分析, 2023, 43(10): 67-74.GAO J, FU Z B. Discussion on phase variation characteristics of vanadium slag in low calcified-roasting[J]. Metallurgical Analysis, 2023, 43(10): 67-74. [14] WEN J, JIANG T, ZHENG X L, et al. Efficient separation of chromium and vanadium by calcification roasting–sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation[J]. Separation and Purification Technology, 2020, 230: 115881. doi: 10.1016/j.seppur.2019.115881 [15] LI C Q, JIANG T, WEN J, et al. Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag[J]. Hydrometallurgy, 2024, 226: 106313. doi: 10.1016/j.hydromet.2024.106313 [16] WEN J, JIANG T, YU T X, et al. Experimental study on separation of vanadium and chromium from vanadium-chromium slag by manganese salt roasting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 977-983. (温婧, 姜涛, 余唐霞, 等. 钒铬渣锰盐焙烧酸浸过程中钒、铬的分离行为[J]. 中国有色金属学报, 2021, 31(4): 977-983.WEN J, JIANG T, YU T X, et al. Experimental study on separation of vanadium and chromium from vanadium-chromium slag by manganese salt roasting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 977-983. [17] JIANG T, WEN J, ZHOU M, et al. Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag[J]. Journal of Alloys and Compounds, 2018, 742: 402-412. doi: 10.1016/j.jallcom.2018.01.201 [18] GAO J, WU W, SHA Y Y, et al. Discussion on variation characteristics of vanadium element valence state during roasting process of vanadium slag[J]. Hydrometallurgy of China, 2024, 43(2): 147-152. (高健, 吴伟, 沙雨燕, 等. 钒渣焙烧过程钒元素价态变化特征探讨[J]. 湿法冶金, 2024, 43(2): 147-152.GAO J, WU W, SHA Y Y, et al. Discussion on variation characteristics of vanadium element valence state during roasting process of vanadium slag[J]. Hydrometallurgy of China, 2024, 43(2): 147-152. [19] WEN J, SUN H Y, JIANG T, et al. Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5): 834-843. doi: 10.1007/s12613-022-2564-7 [20] YU T X, JIANG T, WEN J, et al. New insight into the contribution of Ca, Mn, and Mg component to vanadium extraction from vanadium slag[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113966. doi: 10.1016/j.jece.2024.113966 [21] LI F F, WEN J, JIANG T, et al. Study on leaching behavior of vanadium in acid leaching process of calcium and manganese vanadate system[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 16-24. (李菲菲, 温婧, 姜涛, 等. 钙、锰钒酸盐体系酸浸过程钒的浸出行为研究[J]. 钢铁钒钛, 2024, 45(3): 16-24.LI F F, WEN J, JIANG T, et al. Study on leaching behavior of vanadium in acid leaching process of calcium and manganese vanadate system[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 16-24. -
下载: