中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙化钒渣酸浸过程多组元浸出行为及影响规律

余唐霞 温婧 平鑫浩 姜涛 张林 李月鹏 杨雄

余唐霞, 温婧, 平鑫浩, 姜涛, 张林, 李月鹏, 杨雄. 钙化钒渣酸浸过程多组元浸出行为及影响规律[J]. 钢铁钒钛, 2025, 46(6): 57-65. doi: 10.7513/j.issn.1004-7638.2025.06.006
引用本文: 余唐霞, 温婧, 平鑫浩, 姜涛, 张林, 李月鹏, 杨雄. 钙化钒渣酸浸过程多组元浸出行为及影响规律[J]. 钢铁钒钛, 2025, 46(6): 57-65. doi: 10.7513/j.issn.1004-7638.2025.06.006
YU Tangxia, WEN Jing, PING Xinhao, JIANG Tao, ZHANG Lin, LI Yuepeng, YANG Xiong. Multi-component leaching behavior and influence rule of calcified vanadium slag in acid leaching process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 57-65. doi: 10.7513/j.issn.1004-7638.2025.06.006
Citation: YU Tangxia, WEN Jing, PING Xinhao, JIANG Tao, ZHANG Lin, LI Yuepeng, YANG Xiong. Multi-component leaching behavior and influence rule of calcified vanadium slag in acid leaching process[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 57-65. doi: 10.7513/j.issn.1004-7638.2025.06.006

钙化钒渣酸浸过程多组元浸出行为及影响规律

doi: 10.7513/j.issn.1004-7638.2025.06.006
基金项目: 国家自然科学基金(52374300,52174277,52204309);四川省科技计划项目(ZX20240709)。
详细信息
    作者简介:

    余唐霞,1996年出生,女,安徽安庆人,博士研究生,研究方向:钒渣钙化提钒过程组元交互作用机制,E-mail:2210665@stu.neu.edu.cn

    通讯作者:

    姜涛,1973年出生,男,辽宁本溪人,博士,教授,研究方向:多金属共伴生资源提取冶金,E-mail:jiangt@smm.neu.edu.cn

  • 中图分类号: TF841.3

Multi-component leaching behavior and influence rule of calcified vanadium slag in acid leaching process

  • 摘要: 系统研究了钒渣MFe含量、焙烧过程钙钒比和焙烧温度、浸出pH值对V和杂质组元Mn、Fe、Cr、Mg、Ti、Si浸出行为的影响规律。研究结果表明:降低钒渣中MFe含量、钙钒比(n(CaCO3)/n(V2O3))取1.0、焙烧温度升高至900 ℃、浸出pH设置为2.8,V浸出率可达91.68%。Mn和Mg的浸出率变化趋势相似,随MFe含量增加、钙钒比增大而降低;在焙烧温度800~950 ℃、浸出pH值 2.2~3.0的范围内,浸出率基本稳定,分别约38%和20%。Fe浸出率与MFe含量协同变化,高温焙烧和高pH值可抑制其浸出;受钙钒比影响甚微,均低于0.04%。Cr、Ti和Si浸出率均随MFe含量增加和焙烧温度升高而降低;Cr基本不随钙钒比的变化而变化,而Ti和Si随钙钒比增大呈升高趋势;浸出pH值的影响各异,Si浸出率随pH值升高而降低,而Ti反之升高,Cr浸出率稳定在0.1%左右。
  • 图  1  钒渣和磁性物XRD图谱

    Figure  1.  XRD patterns of vanadium slag and magnetic material

    图  2  不同MFe含量钒渣焙烧熟料微观形貌

    Figure  2.  Micromorphology of roasted vanadium slag with different MFe content

    (a) 2.81% MFe; (b) 7.5% MFe; (c) 12.5% MFe; (d) 17.5% MFe

    图  3  不同MFe含量钒渣的V浸出率变化

    Figure  3.  V leaching rate of vanadium slag with different MFe content

    图  4  不同MFe含量钒渣杂质组元迁移转化规律

    Figure  4.  Migration law of impurity components in vanadium slag with different MFe content

    (a) Mn; (b) Fe; (c) Cr; (d) Mg; (e) Ti; (f) Si

    图  5  不同钙钒比条件下熟料XRD图谱

    Figure  5.  XRD pattern of roasted materials with different calcium vanadium ratio

    图  6  不同钙钒比条件下V浸出率变化

    Figure  6.  Change of V leaching rate under different calcium vanadium ratio

    图  7  不同钙钒比条件下杂质组元迁移转化规律

    Figure  7.  Migration law of impurity components under different calcium vanadium ratio

    (a) Mn; (b) Fe; (c) Cr; (d) Mg; (e) Ti; (f) Si

    图  8  不同焙烧温度条件下的熟料微观形貌

    Figure  8.  Microstructure of roasted materials under different calcination temperature

    (a) 850 ℃; (b) 900 ℃; (c) 950 ℃

    图  9  不同焙烧温度条件下V浸出率变化

    Figure  9.  Change of V leaching rate under different roasting temperature

    图  10  不同焙烧温度条件下杂质组元迁移转化规律

    Figure  10.  Migration law of impurity components under different roasting temperature

    (a) Mn; (b) Fe; (c) Cr; (d) Mg; (e) Ti; (f) Si

    图  11  不同浸出pH条件下V浸出率变化

    Figure  11.  Change of V leaching rate under different pH value

    图  12  不同浸出pH条件下杂质组元迁移转化规律

    Figure  12.  Migration law of impurity components under different pH value

    (a) Mn; (b) Fe; (c) Cr; (d) Mg; (e) Ti; (f) Si

    表  1  钒渣和磁性物化学成分

    Table  1.   Chemical compositions of vanadium slag and magnetic material %

    MFeFeOV2O3MnOCaOTiO2Cr2O3SiO2MgOTotal
    Vanadium slag2.8135.1912.467.712.1311.11.5314.224.7291.87
    Magnetic material34.4832.777.214.731.156.650.998.761.8298.55
    下载: 导出CSV

    表  2  不同MFe含量钒渣焙烧熟料EDS点分析 (原子比)

    Table  2.   EDS point analysis of roasted vanadium slag with different MFe content (atomic ratio) %

    PointMgAlSiCaTiVCrMnFe
    12.940.751.9210.40.2518.260.116.011.72
    22.50.821.458.442.5213.640.124.64.81
    31.010.662.3411.521.9518.70.455.738.45
    42.560.641.447.931.6312.080.263.857.61
    下载: 导出CSV
  • [1] LI H Y, FANG H X, WANG K, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015, 156: 124-135. doi: 10.1016/j.hydromet.2015.06.003
    [2] LIU S G, CHEN Y, YU S, et al. Rapid vnadium extraction from roasted vanadium steel slag via a H2SO4-H2O2 system: Process and mechanism[J]. ACS Omega, 2022, 7: 25580-25589. doi: 10.1021/acsomega.2c02744
    [3] CHEN B J, JIANG T, WEN J, et al. High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(3): 498-507. doi: 10.1007/s12613-023-2719-1
    [4] DING M T. Utilization of vanadium extraction from vanadium-bearing steel slag[J]. IOP Conference Series: Earth and Environmental Science, 2021, 631(1): 012056. doi: 10.1088/1755-1315/631/1/012056
    [5] YU T X, JIANG T, WEN J, et al. Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag[J]. International Journal of Minerals Metallurgy and Materials, 2022, 29(12): 2144-2151. doi: 10.1007/s12613-021-2334-y
    [6] XIANG J Y, LU X, RAO H R, et al. Competitive extraction behaviors of vanadium and chromium in the sodium roasting-water leaching process[J]. Separation and Purification Technology, 2025, 363: 132296. doi: 10.1016/j.seppur.2025.132296
    [7] PENG H, ZHOU Q, LIU H P, et al. Research progress on vanadium extraction technology from vanadium slag[J]. Acta Petrologica Et Mineralogica, 2025, 44(1): 216-226. (彭浩, 周巧, 刘华平, 等. 钒渣提钒技术研究进展[J]. 岩石矿物学杂志, 2025, 44(1): 216-226.

    PENG H, ZHOU Q, LIU H P, et al. Research progress on vanadium extraction technology from vanadium slag[J]. Acta Petrologica Et Mineralogica, 2025, 44(1): 216-226.
    [8] LIU W Z, WANG Z H, CAO W, et al. Green and efficient separation of vanadium and chromium from high-chromium vanadium slag: a review of recent developments[J]. Green Chemistry, 2024, 26: 10006. doi: 10.1039/D4GC02192D
    [9] YE L, DU G C, LI Y P, et al. Analysis of the effect of manganese on vanadium slag calcification and vanadium extraction[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 38-44. (叶露, 杜光超, 李月鹏, 等. 锰对钒渣钙化提钒的影响分析[J]. 钢铁钒钛, 2022, 43(6): 38-44. doi: 10.7513/j.issn.1004-7638.2022.06.006

    YE L, DU G C, LI Y P, et al. Analysis of the effect of manganese on vanadium slag calcification and vanadium extraction[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 38-44. doi: 10.7513/j.issn.1004-7638.2022.06.006
    [10] SHI Z X, LIU J Y. Discussion on the mineralogical characteristics of phase in the process of vanadium slag roasting[J]. Metallurgical Analysis, 2014, 34(7). 12-17. (史志新, 刘锦燕. 钒渣焙烧过程中物相的矿物学特征探讨[J]. 冶金分析, 2024, 34(7): 12-17.

    SHI Z X, LIU J Y. Discussion on the mineralogical characteristics of phase in the process of vanadium slag roasting[J]. Metallurgical Analysis, 2014, 34(7). 12-17.
    [11] HUI X J, ZHANG J H, LIANG Y, et al. Comparison and evaluation of vanadium extraction from the calcification roasted vanadium slag with carbonation leaching and sulfuric acid leaching[J]. Separation and Purification Technology, 2022, 297.
    [12] ZHANG L, ZHANG T, FU N X, et al. Thermodynamic evaluation on calcified roasting of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148. (张林, 张涛, 付念新, 等. 钒渣钙化焙烧热分析及物相转变机理分析[J].中国有色冶金, 2024, 53(4): 142-148.

    ZHANG L, ZHANG T, FU N X, et al. Thermodynamic evaluation on calcified roasting of vanadium slag[J]. China Nonferrous Metallurgy, 2024, 53(4): 142-148.
    [13] GAO J, FU Z B. Discussion on phase variation characteristics of vanadium slag in low calcified-roasting[J]. Metallurgical Analysis, 2023, 43(10): 67-74. (高健, 付自碧. 钒渣低钙化焙烧的物相变化特征探讨[J]. 冶金分析, 2023, 43(10): 67-74.

    GAO J, FU Z B. Discussion on phase variation characteristics of vanadium slag in low calcified-roasting[J]. Metallurgical Analysis, 2023, 43(10): 67-74.
    [14] WEN J, JIANG T, ZHENG X L, et al. Efficient separation of chromium and vanadium by calcification roasting–sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation[J]. Separation and Purification Technology, 2020, 230: 115881. doi: 10.1016/j.seppur.2019.115881
    [15] LI C Q, JIANG T, WEN J, et al. Review of leaching, separation and recovery of vanadium from roasted products of vanadium slag[J]. Hydrometallurgy, 2024, 226: 106313. doi: 10.1016/j.hydromet.2024.106313
    [16] WEN J, JIANG T, YU T X, et al. Experimental study on separation of vanadium and chromium from vanadium-chromium slag by manganese salt roasting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 977-983. (温婧, 姜涛, 余唐霞, 等. 钒铬渣锰盐焙烧酸浸过程中钒、铬的分离行为[J]. 中国有色金属学报, 2021, 31(4): 977-983.

    WEN J, JIANG T, YU T X, et al. Experimental study on separation of vanadium and chromium from vanadium-chromium slag by manganese salt roasting[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 977-983.
    [17] JIANG T, WEN J, ZHOU M, et al. Phase evolutions, microstructure and reaction mechanism during calcification roasting of high chromium vanadium slag[J]. Journal of Alloys and Compounds, 2018, 742: 402-412. doi: 10.1016/j.jallcom.2018.01.201
    [18] GAO J, WU W, SHA Y Y, et al. Discussion on variation characteristics of vanadium element valence state during roasting process of vanadium slag[J]. Hydrometallurgy of China, 2024, 43(2): 147-152. (高健, 吴伟, 沙雨燕, 等. 钒渣焙烧过程钒元素价态变化特征探讨[J]. 湿法冶金, 2024, 43(2): 147-152.

    GAO J, WU W, SHA Y Y, et al. Discussion on variation characteristics of vanadium element valence state during roasting process of vanadium slag[J]. Hydrometallurgy of China, 2024, 43(2): 147-152.
    [19] WEN J, SUN H Y, JIANG T, et al. Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(5): 834-843. doi: 10.1007/s12613-022-2564-7
    [20] YU T X, JIANG T, WEN J, et al. New insight into the contribution of Ca, Mn, and Mg component to vanadium extraction from vanadium slag[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113966. doi: 10.1016/j.jece.2024.113966
    [21] LI F F, WEN J, JIANG T, et al. Study on leaching behavior of vanadium in acid leaching process of calcium and manganese vanadate system[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 16-24. (李菲菲, 温婧, 姜涛, 等. 钙、锰钒酸盐体系酸浸过程钒的浸出行为研究[J]. 钢铁钒钛, 2024, 45(3): 16-24.

    LI F F, WEN J, JIANG T, et al. Study on leaching behavior of vanadium in acid leaching process of calcium and manganese vanadate system[J]. Iron Steel Vanadium Titanium, 2024, 45(3): 16-24.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-29
  • 录用日期:  2025-07-18
  • 修回日期:  2025-07-02
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回