Study on vanadium precipitation by tetraethylammonium bromide at room temperature
-
摘要: 以钙化焙烧—酸浸得到的钒浸出液为沉钒原料,以四乙基溴化铵(TEAB)作沉钒剂进行常温沉钒试验,研究了反应液pH、沉钒剂用量以及沉淀时间对沉钒率及沉淀产物杂质含量的影响,得到最佳试验条件为pH = 2.4、沉钒剂用量n(TEAB):n(V) = 0.5、沉钒时间0.5 h,此时沉钒率为97.1%,沉淀中杂质Mn、Si、P含量均控制在较低水平。对TEAB常温沉钒得到的沉淀物在550 ℃下煅烧3 h,可得到符合行业标准的五氧化二钒(V2O5)。Abstract: A study of vanadium precipitation at room temperature from vanadium leaching solution obtained from calcination roasting and acid leaching was carried out using tetraethylammonium bromide (TEAB) as the precipitation agent. The effects of the pH of the reaction solution, the dosage of the vanadium precipitation agent, and the precipitation time on the vanadium precipitation rate and the impurity content in the precipitate were studied. The optimal experimental conditions were obtained as pH = 2.4, the dosage of vanadium precipitation agent, n(TEAB): n(V) = 0.5, and the vanadium precipitation time of 0.5 h. Under these conditions, the vanadium precipitation rate was 97.1%, and the contents of impurities Mn, Si, and P in the precipitate were controlled at a relatively low level. The precipitate obtained by vanadium precipitation with TEAB at room temperature was calcined at 550 ℃ for 3 h, producing V2O5 product that meets the industry standards.
-
表 1 钒浸出液成分
Table 1. Composition of vanadium leaching solution
g/L V Mn Fe Si P 24.25 8.20 0.023 0.346 0.028 表 2 不同pH条件下沉淀产物中V及杂质元素Mn、Si、P含量
Table 2. The contents of V, Mn, Si and P in the precipitate under different pH conditions
pH Contents/% V Mn Si P 1.6 35.92 1.44 0.111 0.013 1.8 36.08 1.42 0.116 0.014 2.0 36.06 1.37 0.117 0.010 2.2 36.32 1.52 0.118 0.011 2.4 36.46 0.034 0.113 0.015 2.6 36.24 0.040 0.124 0.015 表 3 不同沉钒剂用量条件下沉淀产物中V与杂质元素Mn、Si、P含量
Table 3. The contents of V, Mn, Si and P in the precipitate by using different vanadium precipitation dosage, n(TEAB):n(V)
n(TEAB):n(V) Contents/% V Mn Si P 0.25 35.85 0.054 0.127 0.015 0.5 36.46 0.034 0.113 0.015 0.75 36.12 0.031 0.159 0.014 1 36.24 0.058 0.175 0.011 1.25 35.98 0.031 0.161 0.014 表 4 不同沉钒时间条件下沉淀产物中V与杂质元素Mn、Si、P含量
Table 4. The contents of V, Mn, Si and P in the precipitate by different precipitation time
Precipitation time/h Contents/% V Mn Si P 0.25 36.32 0.025 0.124 0.012 0.5 36.46 0.034 0.113 0.015 1 36.46 0.026 0.111 0.014 1.5 36.26 0.027 0.131 0.016 2 36.19 0.031 0.128 0.016 表 5 沉钒试验稳定性验证结果
Table 5. Stability verification results of vanadium precipitation tests
No. V precipitation rate/% Contents/% Mn Si P 1 97.1 0.034 0.115 0.015 2 96.7 0.028 0.111 0.014 3 97.3 0.032 0.118 0.014 Average 97.1 0.031 0.114 0.014 表 6 煅烧产物成分
Table 6. Composition of calcined product
% V2O5 Mn Si P Fe S Na K 99.40 0.048 0.188 0.024 0.044 <0.002 0.029 0.030 -
[1] WU Y, CHEN D H, LIU W H, et al. Global vanadium industry development report 2022[J]. Iorn Steel Vanadium Titanium, 2023, 44(6): 1-8. (吴优, 陈东辉, 刘武汉, 等. 2022年全球钒工业发展报告[J]. 钢铁钒钛, 2023, 44(6): 1-8. doi: 10.7513/j.issn.1004-7638.2023.06.001WU Y, CHEN D H, LIU W H, et al. Global vanadium industry development report 2022[J]. Iorn Steel Vanadium Titanium, 2023, 44(6): 1-8. doi: 10.7513/j.issn.1004-7638.2023.06.001 [2] QIU Y C, SHI J J, YU B, et al. Review and perspective of vanadium extraction techniques from converter vanadium-bearing slag[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5281-5292. (邱玉超, 石俊杰, 余彬, 等. 转炉钒渣提钒技术研究现状及展望[J]. 化工进展, 2021, 40(10): 5281-5292.QIU Y C, SHI J J, YU B, et al. Review and perspective of vanadium extraction techniques from converter vanadium-bearing slag[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5281-5292. [3] ZHU S Q, YE G H, KANG X X, et al. Research progress on purification and enrichment of vanadium-bearing acid leaching solution[J]. Iorn Steel Vanadium Titanium, 2022, 43(5): 10-22. (朱思琴, 叶国华, 亢选雄, 等. 含钒酸浸液净化与富集的研究进展[J]. 钢铁钒钛, 2022, 43(5): 10-22. doi: 10.7513/j.issn.1004-7638.2022.05.002ZHU S Q, YE G H, KANG X X, et al. Research progress on purification and enrichment of vanadium-bearing acid leaching solution[J]. Iorn Steel Vanadium Titanium, 2022, 43(5): 10-22. doi: 10.7513/j.issn.1004-7638.2022.05.002 [4] DANG F F, ZHANG K X, QI Y B. Research advances on extractants for recovering vanadium from vanadium leaching solution[J]. Materials Reports, 2024, 38(S2): 523-534. (党方方, 张可昕, 齐亚兵. 提钒萃取剂的研究进展[J]. 材料导报, 2024, 38(S2): 523-534.DANG F F, ZHANG K X, QI Y B. Research advances on extractants for recovering vanadium from vanadium leaching solution[J]. Materials Reports, 2024, 38(S2): 523-534. [5] RAO Y Z, FU Z B. Experimental study on precipitation of ammonium metavanadate in NaVO3-H2O system by ammonium bicarbonate and ammonium carbonate[J]. Iorn Steel Vanadium Titanium, 2022, 43(6): 7-13. (饶玉忠, 付自碧. NaVO3-H2O体系碳酸氢铵/碳酸铵沉淀偏钒酸铵试验研究[J]. 钢铁钒钛, 2022, 43(6): 7-13. doi: 10.7513/j.issn.1004-7638.2022.06.002RAO Y Z, FU Z B. Experimental study on precipitation of ammonium metavanadate in NaVO3-H2O system by ammonium bicarbonate and ammonium carbonate[J]. Iorn Steel Vanadium Titanium, 2022, 43(6): 7-13. doi: 10.7513/j.issn.1004-7638.2022.06.002 [6] GURJAR V R, KOUJALAGI P S, REVANKAR H N, et al. Adsorptive removal of vanadium from aqueous media by ion exchange resin[J]. Emergent Materials, 2021, 5(5): 1543-1551. [7] YU B, SUN Z H, XIAN Y, et al. Study on extraction separation of non-roasting acid leachate of vanadium slag[J]. Iorn Steel Vanadium Titanium, 2014, 35(5): 1-6. (余彬, 孙朝晖, 鲜勇, 等. 钒渣无焙烧酸浸液萃取分离试验研究[J]. 钢铁钒钛, 2014, 35(5): 1-6. doi: 10.7513/j.issn.1004-7638.2014.05.001YU B, SUN Z H, XIAN Y, et al. Study on extraction separation of non-roasting acid leachate of vanadium slag[J]. Iorn Steel Vanadium Titanium, 2014, 35(5): 1-6. doi: 10.7513/j.issn.1004-7638.2014.05.001 [8] WU Z X. Research status of preparation of vanadium pentoxide from vanadium containing solution[J]. Iorn Steel Vanadium Titanium, 2023, 44(2): 9-19. (伍珍秀. 含钒溶液制备五氧化二钒的研究现状[J]. 钢铁钒钛, 2023, 44(2): 9-19. doi: 10.7513/j.issn.1004-7638.2023.02.002WU Z X. Research status of preparation of vanadium pentoxide from vanadium containing solution[J]. Iorn Steel Vanadium Titanium, 2023, 44(2): 9-19. doi: 10.7513/j.issn.1004-7638.2023.02.002 [9] WANG J, ZHU X J, ZENG C H, et al. Technology progress of vanadium precipitation in high concentration vanadium liquid[J]. Iorn Steel Vanadium Titanium, 2020, 41(5): 8-13. (王俊, 朱学军, 曾成华, 等. 高浓度钒液沉钒工艺研究进展[J]. 钢铁钒钛, 2020, 41(5): 8-13. doi: 10.7513/j.issn.1004-7638.2020.05.002WANG J, ZHU X J, ZENG C H, et al. Technology progress of vanadium precipitation in high concentration vanadium liquid[J]. Iorn Steel Vanadium Titanium, 2020, 41(5): 8-13. doi: 10.7513/j.issn.1004-7638.2020.05.002 [10] JIANG L, WANG J, FU Z B. Experimental study on precipitation of vanadiumusing melamine[J]. Iorn Steel Vanadium Titanium, 2017(2): 41-45. (蒋霖, 王俊, 付自碧. 三聚氰胺沉钒试验研究[J]. 钢铁钒钛, 2017(2): 41-45. doi: 10.7513/j.issn.1004-7638.2017.02.007JIANG L, WANG J, FU Z B. Experimental study on precipitation of vanadiumusing melamine[J]. Iorn Steel Vanadium Titanium, 2017(2): 41-45. doi: 10.7513/j.issn.1004-7638.2017.02.007 [11] ZHAN L L. Applied fundamental research on precipitation and separation of vanadate in the process of extracting vanadium [D]. Tianjin: Tianjin University, 2020. (詹潋潋. 提钒过程钒酸盐沉淀分离应用基础研究[D]. 天津: 天津大学, 2020.ZHAN L L. Applied fundamental research on precipitation and separation of vanadate in the process of extracting vanadium [D]. Tianjin: Tianjin University, 2020. [12] HE W Y. Vanadium precipitation tests for pickle liquor of calcific-roasting vanadium slag of pangang[J]. Metal Mine, 2014(5): 166-170. (何文艺. 攀钢钒渣钙化焙烧酸浸液沉钒试验[J]. 金属矿山, 2014(5): 166-170.HE W Y. Vanadium precipitation tests for pickle liquor of calcific-roasting vanadium slag of pangang[J]. Metal Mine, 2014(5): 166-170. [13] LUO D S. Study on efficiently and selectively extraction of vanadium from vanadium shale acid leaching solution using tri-n-octylmethylammonium chloride[D]. Wuhan: Wuhan University of Science and Technology, 2020. (罗大双. 三辛基甲基氯化铵高效选择萃取页岩酸浸液中钒的研究[D]. 武汉: 武汉科技大学, 2020.LUO D S. Study on efficiently and selectively extraction of vanadium from vanadium shale acid leaching solution using tri-n-octylmethylammonium chloride[D]. Wuhan: Wuhan University of Science and Technology, 2020. [14] ZHOU X, WEI C, LI M, et al. Thermodynamics of vanadium–sulfur–water systems at 298 K[J]. Hydrometallurgy, 2011, 106(1-2): 104-112. doi: 10.1016/j.hydromet.2010.12.003 [15] LIN Z L, SONG H, WU W H, et al. Extraction of vanadium from alkaline leached solution of spent SCR catalyst using quaternary ammonium salt N263[J]. Environmental Protection of Chemical Industry, 2021, 41(5): 571-575. (林政隆, 宋浩, 吴卫红, 等. 季铵盐N263萃取分离废SCR催化剂碱浸液中的钒[J]. 化工环保, 2021, 41(5): 571-575. doi: 10.3969/j.issn.1006-1878.2021.05.005LIN Z L, SONG H, WU W H, et al. Extraction of vanadium from alkaline leached solution of spent SCR catalyst using quaternary ammonium salt N263[J]. Environmental Protection of Chemical Industry, 2021, 41(5): 571-575. doi: 10.3969/j.issn.1006-1878.2021.05.005 -
下载: