中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超细粒级钛精矿酸解率提升研究

吴健春

吴健春. 超细粒级钛精矿酸解率提升研究[J]. 钢铁钒钛, 2025, 46(6): 72-77, 89. doi: 10.7513/j.issn.1004-7638.2025.06.008
引用本文: 吴健春. 超细粒级钛精矿酸解率提升研究[J]. 钢铁钒钛, 2025, 46(6): 72-77, 89. doi: 10.7513/j.issn.1004-7638.2025.06.008
WU Jianchun. Study on enhancement of acidolysis rate in ultrafine-grade titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 72-77, 89. doi: 10.7513/j.issn.1004-7638.2025.06.008
Citation: WU Jianchun. Study on enhancement of acidolysis rate in ultrafine-grade titanium concentrate[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 72-77, 89. doi: 10.7513/j.issn.1004-7638.2025.06.008

超细粒级钛精矿酸解率提升研究

doi: 10.7513/j.issn.1004-7638.2025.06.008
详细信息
    作者简介:

    吴健春,1978年出生,男,四川简阳人,正高级工程师,主要从事硫酸法钛白及纳米二氧化钛的工艺开发及应用研究,E-mail:wujianchun@126.com

  • 中图分类号: TF823,TQ621

Study on enhancement of acidolysis rate in ultrafine-grade titanium concentrate

  • 摘要: 以超细粒级钛精矿为原料,通过对比分析其与普通矿在粒度分布、化学成分及物相组成上的差异, 探究了影响超细矿酸解率的关键因素,并进行了酸解工艺优化。结果表明:超细矿与普通矿的物相结构无明显差异,均以钛铁矿相为主,但其化学成分中碳、磷含量显著高于普通矿。常规酸解条件下,超细矿的酸解率较普通矿低3~4个百分点,主要归因于其选矿过程中添加的浮选剂较多,在矿粒表面形成致密膜层,显著增加了硫酸向矿粒内部扩散的阻力。研究发现,通过增加反应酸矿比和提高反应酸浓度等化学强化手段,可有效破坏该浮选剂膜层,从而大幅提升酸解率。优化的酸解条件为:反应酸浓度85%~86%,酸矿比1.56~1.58。在此条件下,超细矿酸解率达96%及以上。
  • 图  1  超细矿PTK40与磨后PTK10矿、磨后PTK20矿粒度分布

    Figure  1.  Particle size distribution of PTK40 and PTK10 after grinding, and PTK20 after grinding

    图  2  酸解残渣SEM图片

    (a) PTK20矿酸解残渣; (b)超细矿PTK40酸解残渣

    Figure  2.  SEM image of acidolysis residue

    图  3  细粒级矿和普通钛精矿岩相照片

    Figure  3.  Microscopic images of fine-grained ore and ordinary titanium concentrate

    (a) PTK20; (b) PTK40

    图  4  钛精矿表面形貌

    (a)磨后PTK20矿的SEM; (b)磨后PTK20矿的SEM ; (c)超细矿PTK40的SEM ; (d)超细矿PTK40的SEM

    Figure  4.  Surface morphology images of titanium concentrates

    图  5  反应酸浓度和酸矿比对PTK40矿酸解率的影响

    (a)反应酸浓度; (b)反应酸矿比

    Figure  5.  Effects of sulfuric acid concentration and acid-to-ore ratio on the acidolysis rate of PTK40

    图  6  不同矿酸解过程温度变化曲线

    Figure  6.  Temperature variation curves of different mineral acid hydrolysis processes

    表  1  不同钛精矿的酸解结果

    Table  1.   Acid hydrolysis results of different titanium concentrates

    Maximum
    temperature/℃
    Expansion
    volume/mL
    Residue
    amount/g
    TiO2 content
    in residue/%
    Acidolysis
    ratio/%
    PTK20 190 500 8.56 23.69 95.29
    PTK10 184 550 10.69 20.38 94.30
    PTK40 190 800 11.55 34.62 91.28
    下载: 导出CSV

    表  2  酸解残渣各物相占比及钛元素在各个物相中的比例

    Table  2.   Proportion of each phase of acidolysis residue and content of titanium in each phase %

    Phase Acid residue
    of PTK20
    Acid residue
    of PTK40
    Phase/% Ti/% Phase /% Ti/%
    Ilmenite 16.54 57.04 51.65 86.73
    Quartz 43.79 13.85 24.89 2.3
    Ilmenite+Quartz 2.38 5.52
    Rutile 0.98 4.87 0.02 0.05
    Quartz+Gypsum 6.98 4.31
    Sphene 1.45 3.55 5.85 5.71
    Titanite 0.32 2.12 0.12 0.2
    Gypsum 6.06 1.28 0.18 0.04
    Pyroxene 1.07 0.47 3.68 0.38
    Magnesia-alumina spinel 1.04 0.13 0.36 0
    Other 19.39 6.86 13.25 4.59
    下载: 导出CSV

    表  3  不同钛精矿的化学成分

    Table  3.   Chemical compositions of different titanium concentrates %

    TiO2Fe2O3FeOCCaOMgOMnOPSSiO2V2O5Al2O3
    PTK2047.145.4536.020.110.994.360.7010.0070.322.870.920.941
    PTK1045.844.6737.090.081.14.520.6840.0110.1493.150.0861.14
    PTK4047.554.6737.090.2970.634.380.7650.0220.1582.160.0731.02
    下载: 导出CSV

    表  4  几种钛精矿主要物相分布

    Table  4.   Main phase distribution of several titanium concentrates %

    Phase namePTK40PTK20PTK10
    Ilmenite88.8188.8583.36
    Diopside0.950.793.47
    Sphene0.430.72.29
    Plagioclase0.220.992.61
    Olivine1.061.331.00
    Magnetite0.280.633.82
    Chlorite2.443.440.87
    Almandine4.4401.93
    Other1.532.520.65
    下载: 导出CSV

    表  5  加浮选剂前后的化学成分

    Table  5.   Chemical compositions before and after adding flotation agent %

    NumberFe2O3FeOTiO2CCaOMgOMnONa2OPSSiO2V2O5
    1#6.4336.0245.00.0491.482.890.7930.1290.0150.3664.380.103
    2#6.5835.7444.670.7671.422.780.780.1470.0410.2744.550.106
    下载: 导出CSV

    表  6  浮选剂对酸解率的影响

    Table  6.   The effect of flotation agents on acid hydrolysis rate

    NumberFlotation agent addition ratio/%Expansion volume/mLResidue amount/gTiO2 content in residue/%Acidolysis ratio/%
    1#045011.919.0194.81
    2#270013.4719.8193.97
    下载: 导出CSV

    表  7  超细粒度钛精矿酸解优化试验结果

    Table  7.   Optimization test results of acid hydrolysis of ultrafine grained titanium concentrate

    Acid concentration/% Acid-to-ore ratio Reaction
    time/s
    Maximum
    temperature/℃
    Expansion
    volume/mL
    TiO2 content in residue/% Acidolysis ratio/%
    0# 84.0 1.56 300 193 350 24.76 96.2
    1# 85.0 1.57 330 193 850 30.39 94.2
    2# 86.0 1.57 350 195 1000 25.97 95.8
    3# 86.5 1.56 380 196 1000 24.08 96.4
    4# 85.5 1.56 370 194 880 29.22 94.8
    Note: Sample 0 is the post-grinding PTK20 ore.
    下载: 导出CSV
  • [1] WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30. (王洪彬. 攀西细粒级钛精矿高效回收工艺研究[J]. 钢铁钒钛, 2017, 38(01): 27-30.

    WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30.
    [2] WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85. (王丰雨, 徐晓衣, 梁焘茂, 等. 攀枝花超细粒级钛精矿磁选富集方法[J]. 钢铁钒钛, 2021, 42(2): 79-85.

    WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85.
    [3] XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. (徐晓衣, 王丰雨, 张超达, 等. 螺旋溜槽回收某细粒级钛精矿的试验研究[J]. 矿冶工程, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011

    XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011
    [4] MEHDILO A, IRANNAJAD M. Surface modification of ilmenite and its accompanied gangue minerals by thermal pretreatment: Application in flotation process[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2836-2851. doi: 10.1016/S1003-6326(21)65697-2
    [5] LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541. (李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541.

    LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541.
    [6] WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663. (王海波, 吴小平, 马鑫, 等. 钛精矿酸解固相物中钛的浸出行为及动力学研究[J]. 中国有色金属学报, 2021, 31(12): 3655-3663.

    WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663.
    [7] GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15. (高健. 钛精矿连续酸解过程中物相变化特征探讨[J]. 冶金分析, 2019, 39(12): 8-15.

    GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15.
    [8] WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43. (吴健春, 路瑞芳, 石瑞成. 酸解残渣回收矿的酸解性能研究[J]. 钢铁钒钛, 2021, 42(3): 37-43.

    WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43.
    [9] MACIEJ J, KRZYSZTOF L, SANDRA T, et al. Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration[J]. Green Sciences, 2021, 23(3): 37-42.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 录用日期:  2025-07-29
  • 修回日期:  2025-07-24
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回