Study on enhancement of acidolysis rate in ultrafine-grade titanium concentrate
-
摘要: 以超细粒级钛精矿为原料,通过对比分析其与普通矿在粒度分布、化学成分及物相组成上的差异, 探究了影响超细矿酸解率的关键因素,并进行了酸解工艺优化。结果表明:超细矿与普通矿的物相结构无明显差异,均以钛铁矿相为主,但其化学成分中碳、磷含量显著高于普通矿。常规酸解条件下,超细矿的酸解率较普通矿低3~4个百分点,主要归因于其选矿过程中添加的浮选剂较多,在矿粒表面形成致密膜层,显著增加了硫酸向矿粒内部扩散的阻力。研究发现,通过增加反应酸矿比和提高反应酸浓度等化学强化手段,可有效破坏该浮选剂膜层,从而大幅提升酸解率。优化的酸解条件为:反应酸浓度85%~86%,酸矿比1.56~1.58。在此条件下,超细矿酸解率达96%及以上。Abstract: Utilizing ultrafine-grade titanium concentrate as the raw material, this study investigated the key factors influencing its acidolysis efficiency by comparative analysis of the differences in particle size distribution, chemical composition, and phase composition between ultrafine and conventional-grade concentrates. Acidolysis process optimization was subsequently conducted. The results indicate that the phase structure of the ultrafine-grade titanium concentrate shows no significant difference from the conventional-grade titanium concentrate, with ilmenite being the dominant phase in both. However, the ultrafine-grade titanium concentrate exhibits significantly higher carbon (C) and phosphorus (P) contents. Under the standard acidolysis conditions, the acidolysis rate of the ultrafine-grade titanium concentrate was 3-4 percentage points lower than that of the conventional-grade titanium concentrate. This reduction is primarily attributed to the higher dosage of flotation reagents used during the beneficiation of the ultrafine material, which forms a dense film layer on the particle surfaces, significantly increasing the diffusion resistance of sulfuric acid into the particle interior. The study found that employing chemical intensification measures, such as increasing the reaction acid-to-ore ratio and elevating the reaction acid concentration, effectively disrupts this flotation reagent film layer, thereby substantially enhancing the acidolysis rate. The optimized acidolysis conditions were determined as follows: reaction acid concentration of 85%-86% and acid-to-ore ratio of 1.56-1.58. Under these conditions, the acidolysis rate of the ultrafine-grade concentrate reached up to 96% or higher.
-
Key words:
- ultrafine-grade titanium concentrate /
- acidolysis rate /
- flotation agents
-
表 1 不同钛精矿的酸解结果
Table 1. Acid hydrolysis results of different titanium concentrates
Maximum
temperature/℃Expansion
volume/mLResidue
amount/gTiO2 content
in residue/%Acidolysis
ratio/%PTK20 190 500 8.56 23.69 95.29 PTK10 184 550 10.69 20.38 94.30 PTK40 190 800 11.55 34.62 91.28 表 2 酸解残渣各物相占比及钛元素在各个物相中的比例
Table 2. Proportion of each phase of acidolysis residue and content of titanium in each phase
% Phase Acid residue
of PTK20Acid residue
of PTK40Phase/% Ti/% Phase /% Ti/% Ilmenite 16.54 57.04 51.65 86.73 Quartz 43.79 13.85 24.89 2.3 Ilmenite+Quartz 2.38 5.52 Rutile 0.98 4.87 0.02 0.05 Quartz+Gypsum 6.98 4.31 Sphene 1.45 3.55 5.85 5.71 Titanite 0.32 2.12 0.12 0.2 Gypsum 6.06 1.28 0.18 0.04 Pyroxene 1.07 0.47 3.68 0.38 Magnesia-alumina spinel 1.04 0.13 0.36 0 Other 19.39 6.86 13.25 4.59 表 3 不同钛精矿的化学成分
Table 3. Chemical compositions of different titanium concentrates
% TiO2 Fe2O3 FeO C CaO MgO MnO P S SiO2 V2O5 Al2O3 PTK20 47.14 5.45 36.02 0.11 0.99 4.36 0.701 0.007 0.32 2.87 0.92 0.941 PTK10 45.84 4.67 37.09 0.08 1.1 4.52 0.684 0.011 0.149 3.15 0.086 1.14 PTK40 47.55 4.67 37.09 0.297 0.63 4.38 0.765 0.022 0.158 2.16 0.073 1.02 表 4 几种钛精矿主要物相分布
Table 4. Main phase distribution of several titanium concentrates
% Phase name PTK40 PTK20 PTK10 Ilmenite 88.81 88.85 83.36 Diopside 0.95 0.79 3.47 Sphene 0.43 0.7 2.29 Plagioclase 0.22 0.99 2.61 Olivine 1.06 1.33 1.00 Magnetite 0.28 0.63 3.82 Chlorite 2.44 3.44 0.87 Almandine 4.44 0 1.93 Other 1.53 2.52 0.65 表 5 加浮选剂前后的化学成分
Table 5. Chemical compositions before and after adding flotation agent
% Number Fe2O3 FeO TiO2 C CaO MgO MnO Na2O P S SiO2 V2O5 1# 6.43 36.02 45.0 0.049 1.48 2.89 0.793 0.129 0.015 0.366 4.38 0.103 2# 6.58 35.74 44.67 0.767 1.42 2.78 0.78 0.147 0.041 0.274 4.55 0.106 表 6 浮选剂对酸解率的影响
Table 6. The effect of flotation agents on acid hydrolysis rate
Number Flotation agent addition ratio/% Expansion volume/mL Residue amount/g TiO2 content in residue/% Acidolysis ratio/% 1# 0 450 11.9 19.01 94.81 2# 2 700 13.47 19.81 93.97 表 7 超细粒度钛精矿酸解优化试验结果
Table 7. Optimization test results of acid hydrolysis of ultrafine grained titanium concentrate
Acid concentration/% Acid-to-ore ratio Reaction
time/sMaximum
temperature/℃Expansion
volume/mLTiO2 content in residue/% Acidolysis ratio/% 0# 84.0 1.56 300 193 350 24.76 96.2 1# 85.0 1.57 330 193 850 30.39 94.2 2# 86.0 1.57 350 195 1000 25.97 95.8 3# 86.5 1.56 380 196 1000 24.08 96.4 4# 85.5 1.56 370 194 880 29.22 94.8 Note: Sample 0 is the post-grinding PTK20 ore. -
[1] WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30. (王洪彬. 攀西细粒级钛精矿高效回收工艺研究[J]. 钢铁钒钛, 2017, 38(01): 27-30.WANG H B. Study on efficient recovery process of fine grained ilmenite in Panxi area[J]. Iron Steel Vanadium Titanium, 2017, 38(01): 27-30. [2] WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85. (王丰雨, 徐晓衣, 梁焘茂, 等. 攀枝花超细粒级钛精矿磁选富集方法[J]. 钢铁钒钛, 2021, 42(2): 79-85.WANG F Y, XU X Y, LIANG T M, et al. Magnetic separation and enrichment method of ultrafine-grained vanadium-bearing titanomagnetite in Panxi region[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 79-85. [3] XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. (徐晓衣, 王丰雨, 张超达, 等. 螺旋溜槽回收某细粒级钛精矿的试验研究[J]. 矿冶工程, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011XU X Y, WANG F Y, ZHANG C D, et al. Optimization of gravity separation flowsheet with spiral chute for collecting fine ilmenite[J]. Mining and Metallurgical Engineering, 2021, 41(5): 45-48. doi: 10.3969/j.issn.0253-6099.2021.05.011 [4] MEHDILO A, IRANNAJAD M. Surface modification of ilmenite and its accompanied gangue minerals by thermal pretreatment: Application in flotation process[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2836-2851. doi: 10.1016/S1003-6326(21)65697-2 [5] LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541. (李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541.LI H Q, WANG M H, QIU G B. Behavior of sulfuric acid acidolysis of perovskite concentratest[J]. Chemical Industry and Engineering Progress2023, 42(S1): 536-541. [6] WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663. (王海波, 吴小平, 马鑫, 等. 钛精矿酸解固相物中钛的浸出行为及动力学研究[J]. 中国有色金属学报, 2021, 31(12): 3655-3663.WANG H B, WU X P, MA X, et al. Research on leaching behavior and kinetics of titanium from solid phase of acidolysis of titanium concentrate[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3655-3663. [7] GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15. (高健. 钛精矿连续酸解过程中物相变化特征探讨[J]. 冶金分析, 2019, 39(12): 8-15.GAO J. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019, 39(12): 8-15. [8] WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43. (吴健春, 路瑞芳, 石瑞成. 酸解残渣回收矿的酸解性能研究[J]. 钢铁钒钛, 2021, 42(3): 37-43.WU J C, LU R F, SHI R C. Study on the acidolysis properties of titanium ore recovered from acidolysis residue[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 37-43. [9] MACIEJ J, KRZYSZTOF L, SANDRA T, et al. Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration[J]. Green Sciences, 2021, 23(3): 37-42. -
下载: