Preparation of high-purity vanadium metal by molten salt synergistic magnesiothermic reduction
-
摘要: 金属热还原法制备金属钒存在金属用量大、成本高和钒中氧含量高的问题。虽然镁热还原法在热力学上能够将钒中氧降低至0.01%,但在实际反应过程中,MgO/MgV2O4氧化层的形成会严重阻碍反应动力学过程。为此,创新性地提出“氢还原—熔盐协同镁热还原”两步法新工艺,首先通过氢还原制备低价钒氧化物(V2O3、VO)并作为镁热还原工艺的原料,再利用反应型ZrCl4-KCl熔盐为介质打破氧化层包裹效应,突破动力学限制,在低温下同步实现钒氧化物的镁热还原与氧化层界面净化。经工艺参数优化(Mg添加量35%、反应时间1 h、温度800 ℃),最终制备出O含量约为0.16%的高纯金属钒。Abstract: The conventional metallothermic reduction process for vanadium production suffers from high metal consumption, elevated costs, and high oxygen content in the resulting metallic vanadium. While magnesium reduction is thermodynamically capable of reducing oxygen content to 0.01%, the formation of an MgO/MgV2O4 oxide layer severely impedes the reaction kinetics during the actual process. This study innovatively proposes a novel two-step process: “synergetic magnesiothermic reduction by hydrogen reduction-molten salt.” Firstly, low-valent vanadium oxides (V2O3, VO) are prepared via hydrogen reduction to serve as the feedstock for the magnesiothermic reduction step. Subsequently, reactive ZrCl4-KCl molten salt is employed as a medium to disrupt the oxide layer encapsulation effect and overcome the kinetic limitations. This enables the simultaneous magnesium reduction of vanadium oxides and interfacial purification of the oxide layer at a lower temperature. Following optimization of process parameters (Mg addition: 35%, reaction time: 1 h, temperature: 800 ℃), high-purity metallic vanadium with an oxygen content of approximately 0.16% was successfully produced.
-
Key words:
- molten salt /
- magnesiothermic reduction /
- VO /
- vanadium metal /
- oxide layer
-
表 1 不同金属钒粉中各元素含量对比
Table 1. Comparison of the contents of various elements in different metal vanadium powders
% Vanadium powder source Sample number V N O Other elements Present study a 99.12 0.03 0.34 0.51 b 99.54 0.03 0.16 0.27 Company procurement c ≥99 0.006 0.38 d ≥99 0.006 0.45 -
[1] HU Y, ZHANG Y, BAO S, et al. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(10): 893-898. doi: 10.1007/s12613-012-0644-9 [2] KHOSHAHVAL F, PARK M, SHIN H C, et al. Vanadium, rhodium, silver and cobalt self-powered neutron detector calculations by RAST-K v2.0[J]. Annals of Nuclear Energy, 2018, 111: 644-659. doi: 10.1016/j.anucene.2017.09.048 [3] ZHOU Y, CAO L, WANG L, et al. Monte Carlo analyses and experimental investigation of the vanadium self-powered neutron detector in 60Co source and research pulsed reactor[J]. Nuclear Instruments & Methods in Physics Research. Section A, 2023, 1056: 168704. [4] PENG X, LI Q, WANG K. Dynamic compensation of vanadium self powered neutron detectors based on Luenberger form filter[J]. Progress in Nuclear Energy (New Series), 2015, 78: 190-195. doi: 10.1016/j.pnucene.2014.09.006 [5] LARBALESTIER D, GUREVICH A, FELDMANN D M, et al. High-Tc superconducting materials for electric power applications[J]. Nature (London), 2001, 414(6861): 368-377. doi: 10.1038/35104654 [6] NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716. (牛平均, 张道德, 周瑞瑚, 等. 钠冷快堆包壳材料钒基合金的腐蚀[J]. 原子能科学技术, 1982(6): 709-716.NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716. [7] WANG S, GUO Y, ZHENG F, et al. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1687-1696. doi: 10.1016/S1003-6326(20)65330-4 [8] SILIN I, HAHN K, GÜRSEL D, et al. Mineral processing and metallurgical treatment of lead vanadate ores[J]. Minerals (Basel), 2020, 10(2): 197. [9] KAGAWA A, ONO E, KUSAKABE T, et al. Absorption of hydrogen by vanadium-rich V Ti-based alloys[J]. Journal of the Less Common Metals, 1991, 172-174: 64-70. [10] BRISCOE H V A. Inorganic chemistry[J]. Annual Reports on the Progress of Chemistry, 1923, 20(1): 28-56. [11] WANG F, XU B, WAN H, et al. Preparation of vanadium powders by calcium vapor reduction of V2O3 under vacuum[J]. Vacuum, 2020, 173: 109133. doi: 10.1016/j.vacuum.2019.109133 [12] KONG Y, CHEN J, LI B, et al. Mechanistic insight into the influence of Al2O3 concentration on the electro-reduction of V2O3 to vanadium in molten Na3AlF6[J]. Electrochimica acta, 2019, 295: 452-460. doi: 10.1016/j.electacta.2018.10.155 [13] KONG Y, LI B, CHEN J, et al. Electrochemical reduction of vanadium sesquioxide in low-temperature molten fluoride salts[J]. Electrochimica acta, 2020, 342: 136081. doi: 10.1016/j.electacta.2020.136081 [14] WANG C T, BAROCH E F, WORCESTER S A, et al. preparation and properties of high-purity vanadium and V-15Cr-5Ti[J]. Metall Trans, 1970, 1(6): 1683-1689. [15] LINDVALL M, GRAN J, SICHEN D. Determination of the vanadium solubility in the Al2O3-CaO(25mass%)-SiO2 system[J]. Calphad, 2014, 47: 50-55. doi: 10.1016/j.calphad.2014.06.003 [16] GAO F, NIE Z, YANG D, et al. Environmental impacts analysis of titanium sponge production using Kroll process in China[J]. Journal of Cleaner Production, 2018, 174: 771-779. doi: 10.1016/j.jclepro.2017.09.240 [17] XIA Y, LEFLER H D, FANG Z Z, et al. Chapter 17-Energy consumption of the Kroll and HAMR processes for titanium production[M]//FANG Z Z, FROES F H, ZHANG Y. Extractive Metallurgy of Titanium. Elsevier, 2020: 389-410. [18] FERRANTE M J. High purity vanadium by metallothermic reduction of vanadium trichloride[M]. America: US Department of the Interior: Bureau of Mines, 1968. [19] MIYAUCHI A, OKABE T H. Production of metallic vanadium by preform reduction process[J]. Materials Transactions, 2010, 51(6): 1102-1108. doi: 10.2320/matertrans.M2010027 [20] INAZU N S E F S. A facile formation of vanadium(0) by the reduction of vanadium pentoxide pelletized with magnesium oxide enabled by microwave irradiation[J]. Chemistry Select, 2020, 10(5): 2949-2953. [21] YAN J, DOU Z, ZHANG T. Preparation of vanadium by the magnesiothermic self-propagating reduction and process control[J]. Nanotechnology Reviews (Berlin), 2022, 11(1): 1237-1247. doi: 10.1515/ntrev-2022-0074 [22] ZHONG D P, PEI G S, XIANG J Y, et al. Thermodynamic behavior of dissolved oxygen and hydrogen in pure vanadium[J]. Journal of Mining and Metallurgy. Section B, Metallurgy, 2021, 57(3): 413-419. doi: 10.2298/JMMB210108037Z [23] LEE D W L H S Y. Synthesis of vanadium powder by magnesiothermic reduction[J]. Adv Mater Res, 2014, 1025-6: 509-514. [24] OKABE T H, ZHENG C, TANINOUCHI Y. Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare earth metals[J]. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2018, 49(3): 1056-1066. doi: 10.1007/s11663-018-1172-4 [25] KOMURA A I H W N. Solubility of magnesium in molten magnesium chloride[J]. J Soc Chem Ind Japan, 1968, 71(12): 1976-1979. -
下载: