中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐协同镁热还原制备高纯金属钒

于杰 钟大鹏 黄青云 徐海铭 向俊一 喻文昊 吕学伟

于杰, 钟大鹏, 黄青云, 徐海铭, 向俊一, 喻文昊, 吕学伟. 熔盐协同镁热还原制备高纯金属钒[J]. 钢铁钒钛, 2025, 46(6): 78-83. doi: 10.7513/j.issn.1004-7638.2025.06.009
引用本文: 于杰, 钟大鹏, 黄青云, 徐海铭, 向俊一, 喻文昊, 吕学伟. 熔盐协同镁热还原制备高纯金属钒[J]. 钢铁钒钛, 2025, 46(6): 78-83. doi: 10.7513/j.issn.1004-7638.2025.06.009
YU Jie, ZHONG Dapeng, HUANG Qingyun, XU Haiming, XIANG Junyi, YU Wenhao, LÜ Xuewei. Preparation of high-purity vanadium metal by molten salt synergistic magnesiothermic reduction[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 78-83. doi: 10.7513/j.issn.1004-7638.2025.06.009
Citation: YU Jie, ZHONG Dapeng, HUANG Qingyun, XU Haiming, XIANG Junyi, YU Wenhao, LÜ Xuewei. Preparation of high-purity vanadium metal by molten salt synergistic magnesiothermic reduction[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 78-83. doi: 10.7513/j.issn.1004-7638.2025.06.009

熔盐协同镁热还原制备高纯金属钒

doi: 10.7513/j.issn.1004-7638.2025.06.009
基金项目: 国家自然科学基金(52404314, 52425408);重庆市自然科学基金(cstc2021jcyj-msxmX0882);中央高校基本科研业务费(2024CDJXY003)。
详细信息
    作者简介:

    于杰,2000年出生,男,山西大同人,硕士研究生,研究方向为高纯金属钒制备,E-mail:2023202007@cqust.edu.cn

    通讯作者:

    钟大鹏,1993年出生,男,重庆奉节人,博士,长期从事冶金物化基础研究工作,E-mail:Zhongdapengcqu@163.com

  • 中图分类号: TF841.3

Preparation of high-purity vanadium metal by molten salt synergistic magnesiothermic reduction

  • 摘要: 金属热还原法制备金属钒存在金属用量大、成本高和钒中氧含量高的问题。虽然镁热还原法在热力学上能够将钒中氧降低至0.01%,但在实际反应过程中,MgO/MgV2O4氧化层的形成会严重阻碍反应动力学过程。为此,创新性地提出“氢还原—熔盐协同镁热还原”两步法新工艺,首先通过氢还原制备低价钒氧化物(V2O3、VO)并作为镁热还原工艺的原料,再利用反应型ZrCl4-KCl熔盐为介质打破氧化层包裹效应,突破动力学限制,在低温下同步实现钒氧化物的镁热还原与氧化层界面净化。经工艺参数优化(Mg添加量35%、反应时间1 h、温度800 ℃),最终制备出O含量约为0.16%的高纯金属钒。
  • 图  1  不同Mg添加量下的产物平衡物相

    Figure  1.  Equilibrium phases of products under different amounts of Mg addition

    图  2  镁热还原体系的V-O固溶体标准生成吉布斯自由能变化趋势[22]

    Figure  2.  The diagram of the standard Gibbs free energy change for the formation of V-O solid solution in the magnesiothermic reduction system[22]

    图  3  未添加ZrCl4的产物XRD谱图

    Figure  3.  XRD pattern of the product without the addition of ZrCl4

    图  4  熔盐协同镁热还原体系的标准吉布斯自由能变化

    Figure  4.  Diagram of the standard Gibbs free energy change for the molten salt synergistic magnesiothermic reduction system

    图  5  ZrCl4和MgO反应后的产物XRD谱图

    Figure  5.  XRD pattern of the product after the reaction of ZrCl4 and MgO

    图  6  产物金属钒XRD谱图

    Figure  6.  XRD pattern of metallic vanadium product

    图  7  作用机理

    Figure  7.  Mechanism of action diagram

    图  8  全工艺流程

    Figure  8.  Whole process flow diagram

    图  9  不同金属钒粉末粒度分布

    Figure  9.  The particle size distribution of the metal vanadium powder

    表  1  不同金属钒粉中各元素含量对比

    Table  1.   Comparison of the contents of various elements in different metal vanadium powders %

    Vanadium powder source Sample number V N O Other elements
    Present study a 99.12 0.03 0.34 0.51
    b 99.54 0.03 0.16 0.27
    Company procurement c ≥99 0.006 0.38
    d ≥99 0.006 0.45
    下载: 导出CSV
  • [1] HU Y, ZHANG Y, BAO S, et al. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(10): 893-898. doi: 10.1007/s12613-012-0644-9
    [2] KHOSHAHVAL F, PARK M, SHIN H C, et al. Vanadium, rhodium, silver and cobalt self-powered neutron detector calculations by RAST-K v2.0[J]. Annals of Nuclear Energy, 2018, 111: 644-659. doi: 10.1016/j.anucene.2017.09.048
    [3] ZHOU Y, CAO L, WANG L, et al. Monte Carlo analyses and experimental investigation of the vanadium self-powered neutron detector in 60Co source and research pulsed reactor[J]. Nuclear Instruments & Methods in Physics Research. Section A, 2023, 1056: 168704.
    [4] PENG X, LI Q, WANG K. Dynamic compensation of vanadium self powered neutron detectors based on Luenberger form filter[J]. Progress in Nuclear Energy (New Series), 2015, 78: 190-195. doi: 10.1016/j.pnucene.2014.09.006
    [5] LARBALESTIER D, GUREVICH A, FELDMANN D M, et al. High-Tc superconducting materials for electric power applications[J]. Nature (London), 2001, 414(6861): 368-377. doi: 10.1038/35104654
    [6] NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716. (牛平均, 张道德, 周瑞瑚, 等. 钠冷快堆包壳材料钒基合金的腐蚀[J]. 原子能科学技术, 1982(6): 709-716.

    NIU P J, ZHANG D D, ZHOU R H, et al. Corrosion of vanadium-based alloys as cladding materials for sodium-cooled fast reactors[J]. Atomic Energy Science and Technology, 1982(6): 709-716.
    [7] WANG S, GUO Y, ZHENG F, et al. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1687-1696. doi: 10.1016/S1003-6326(20)65330-4
    [8] SILIN I, HAHN K, GÜRSEL D, et al. Mineral processing and metallurgical treatment of lead vanadate ores[J]. Minerals (Basel), 2020, 10(2): 197.
    [9] KAGAWA A, ONO E, KUSAKABE T, et al. Absorption of hydrogen by vanadium-rich V Ti-based alloys[J]. Journal of the Less Common Metals, 1991, 172-174: 64-70.
    [10] BRISCOE H V A. Inorganic chemistry[J]. Annual Reports on the Progress of Chemistry, 1923, 20(1): 28-56.
    [11] WANG F, XU B, WAN H, et al. Preparation of vanadium powders by calcium vapor reduction of V2O3 under vacuum[J]. Vacuum, 2020, 173: 109133. doi: 10.1016/j.vacuum.2019.109133
    [12] KONG Y, CHEN J, LI B, et al. Mechanistic insight into the influence of Al2O3 concentration on the electro-reduction of V2O3 to vanadium in molten Na3AlF6[J]. Electrochimica acta, 2019, 295: 452-460. doi: 10.1016/j.electacta.2018.10.155
    [13] KONG Y, LI B, CHEN J, et al. Electrochemical reduction of vanadium sesquioxide in low-temperature molten fluoride salts[J]. Electrochimica acta, 2020, 342: 136081. doi: 10.1016/j.electacta.2020.136081
    [14] WANG C T, BAROCH E F, WORCESTER S A, et al. preparation and properties of high-purity vanadium and V-15Cr-5Ti[J]. Metall Trans, 1970, 1(6): 1683-1689.
    [15] LINDVALL M, GRAN J, SICHEN D. Determination of the vanadium solubility in the Al2O3-CaO(25mass%)-SiO2 system[J]. Calphad, 2014, 47: 50-55. doi: 10.1016/j.calphad.2014.06.003
    [16] GAO F, NIE Z, YANG D, et al. Environmental impacts analysis of titanium sponge production using Kroll process in China[J]. Journal of Cleaner Production, 2018, 174: 771-779. doi: 10.1016/j.jclepro.2017.09.240
    [17] XIA Y, LEFLER H D, FANG Z Z, et al. Chapter 17-Energy consumption of the Kroll and HAMR processes for titanium production[M]//FANG Z Z, FROES F H, ZHANG Y. Extractive Metallurgy of Titanium. Elsevier, 2020: 389-410.
    [18] FERRANTE M J. High purity vanadium by metallothermic reduction of vanadium trichloride[M]. America: US Department of the Interior: Bureau of Mines, 1968.
    [19] MIYAUCHI A, OKABE T H. Production of metallic vanadium by preform reduction process[J]. Materials Transactions, 2010, 51(6): 1102-1108. doi: 10.2320/matertrans.M2010027
    [20] INAZU N S E F S. A facile formation of vanadium(0) by the reduction of vanadium pentoxide pelletized with magnesium oxide enabled by microwave irradiation[J]. Chemistry Select, 2020, 10(5): 2949-2953.
    [21] YAN J, DOU Z, ZHANG T. Preparation of vanadium by the magnesiothermic self-propagating reduction and process control[J]. Nanotechnology Reviews (Berlin), 2022, 11(1): 1237-1247. doi: 10.1515/ntrev-2022-0074
    [22] ZHONG D P, PEI G S, XIANG J Y, et al. Thermodynamic behavior of dissolved oxygen and hydrogen in pure vanadium[J]. Journal of Mining and Metallurgy. Section B, Metallurgy, 2021, 57(3): 413-419. doi: 10.2298/JMMB210108037Z
    [23] LEE D W L H S Y. Synthesis of vanadium powder by magnesiothermic reduction[J]. Adv Mater Res, 2014, 1025-6: 509-514.
    [24] OKABE T H, ZHENG C, TANINOUCHI Y. Thermodynamic considerations of direct oxygen removal from titanium by utilizing the deoxidation capability of rare earth metals[J]. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2018, 49(3): 1056-1066. doi: 10.1007/s11663-018-1172-4
    [25] KOMURA A I H W N. Solubility of magnesium in molten magnesium chloride[J]. J Soc Chem Ind Japan, 1968, 71(12): 1976-1979.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  14
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-11
  • 录用日期:  2025-08-27
  • 修回日期:  2025-07-03
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回