Study on the hydride precipitation orientation in Ti-2Al-2.5Zr titanium alloy
-
摘要: 研究了含氢量对Ti-2Al-2.5Zr钛合金微观组织以及氢化物析出取向的影响。结果显示,高温气相充氢(质量分数)0.01%、0.05%后,合金内部形成了δ-氢化物。随着含氢量的增加,氢化物尺寸和密度逐渐增加。α-Ti/δ-氢化物具有{0001}α//{${1 \bar {1}1} $}δ, <$ {1\bar {2}10} $>α//<110>δ取向关系。氢化物析出导致的晶格膨胀会使得周边α-Ti基体和氢化物内部形成大量的位错,其尖端处的应力可穿过晶界,并诱导相邻晶粒内部形成氢化物。
-
关键词:
- Ti-2Al-2.5Zr钛合金 /
- 气相渗氢 /
- δ-氢化物 /
- 微观组织
Abstract: In this paper, the effects of hydrogen content on the microstructure and hydride precipitation orientation in Ti-2Al-2.5Zr titanium alloy were investigated. The results showed that after high-temperature gas-phase hydrogen charging (mass fraction: 0.01%、0.05%), δ-phase hydrides were formed within the alloy matrix. With the increase of hydrogen content, the size and density of hydrides gradually increased. The hydrides exhibited an orientation relationship of {0001}α//{$ {1\bar {1} 1}$}δ, <$ {1\bar {2}10} $>α//<110>δ. Lattice expansion caused by hydride precipitation generated numerous dislocations in both the surrounding α-Ti matrix and the hydrides themselves and the stress at the hydride tips could transmit across grain boundaries and induce hydride formation in adjacent grains. -
表 1 Ti-2Al-2.5Zr钛合金名义化学成分
Table 1. The nominal chemical composition of Ti-2Al-2.5Zr titanium alloy
% C H O N Al Zr Ti ≤0.01 ≤0.005 ≤0.07 ≤0.006 1.8~2.5 2~3 Bal. -
[1] BIGNON Q, MARTIN F, AUZOUX Q, et al. Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor[J]. Corrosion Science, 2019, 150: 32-41. doi: 10.1016/j.corsci.2019.01.020 [2] ANG S, NING Z, LI P, et al. Study on the crack nucleation mechanism of Ti-2Al-2.5Zr alloy in low cycle fatigue: Quasi in-situ experiments and crystal plasticity simulation[J]. International Journal of Plasticity, 2023, 165: 103604. doi: 10.1016/j.ijplas.2023.103604 [3] CHEN G, CHU T, CUI Y, et al. Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5 Zr alloy tube[J]. International Journal of Fatigue, 2022, 158: 106735. doi: 10.1016/j.ijfatigue.2022.106735 [4] LI M, WANG S, YU J, et al. Isothermal and thermomechanical fatigue behavior of Ti-2Al-2.5Zr titanium alloy[J]. International Journal of Fatigue, 2023, 177: 107923. doi: 10.1016/j.ijfatigue.2023.107923 [5] DECONINCK L, DEPOVER T, VERBEKEN K. The mechanism of hydride formation during electrochemical hydrogen charging of Ti-6Al-4V[J]. Materials Today Sustainability, 2023, 22: 100387. doi: 10.1016/j.mtsust.2023.100387 [6] SUN P, FANG Z Z, KOOPMAN M, et al. An experimental study of the (Ti-6Al-4V)-xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques[J]. Acta Materialia, 2015, 84: 29-41. doi: 10.1016/j.actamat.2014.10.045 [7] SINHA V, SCHWARZ R, MILLS M, et al. Effects of hydrogen on fatigue behavior of near-alpha titanium alloys[J]. Scripta Materialia, 2018, 153: 81-85. doi: 10.1016/j.scriptamat.2018.03.027 [8] LIU R, XIE Y, JIN Y, et al. Stress corrosion cracking of the titanium alloys under hydrostatic pressure resulting from the degradation of passive films[J]. Acta Materialia, 2023, 252. [9] EVANS W J, BACHE M R. Hydrogen and fatigue behavior in a near alpha titanium alloy[J]. Scripta Metallurgica et Materialia, 1995, 32(7). [10] MATOKHNYUK L E, VOINALOVICH A V, YAKOVKOVLEVA T Y, et al. Effect of hydrogenation on fatigue resistance of PT-7M titanium alloy[J]. Strength of Materials, 1988, 20(8): 1065-1071. doi: 10.1007/BF01528681 [11] WASZ M L, BROTZEN F R, MCLELLAN R B, et al. Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium[J]. International Materials Reviews, 1996, 41(1): 1-12. doi: 10.1179/imr.1996.41.1.1 [12] LIN X H, BEYERLEIN I J, HAN W Z. Annealing cracking in Zr and a Zr-alloy with low hydrogen concentration[J]. Journal of Materials Science & Technology, 2024, 182: 165-175. [13] ZHANG X, GUO F L. Finite element analysis of the coupling effect between hydrogen diffusion and stress field at crack tip[J]. Surface Technology, 2018, 47(6): 240-245. (张显, 国凤林. 氢扩散与裂纹尖端应力场耦合效应的有限元分析[J]. 表面技术, 2018, 47(6): 240-245.ZHANG X, GUO F L. Finite element analysis of the coupling effect between hydrogen diffusion and stress field at crack tip[J]. Surface Technology, 2018, 47(6): 240-245. [14] ZHAO H, CHAKRABORTY P, PONGE D, et al. Hydrogen trapping and embrittlement in high-strength Al alloys[J]. Microscopy and Microanalysis, 2022, 28(Sup1): 1. [15] MOODY N R, GERBERICH W W. The effect of stress state on internal hydrogen-induced crack growth in Ti-6AI-6V-2Sn[J]. Metallurgical Transactions A, 1982, 13(6). [16] BOURRET A, LASALMONIE A, NAKA S. In-situ high resolution observation of hydride precipitation in titanium[J]. Scripta Metallurgica, 1986, 20(6): 861-866. doi: 10.1016/0036-9748(86)90455-2 [17] CONFORTO E, CAILLARD D. A fast method for determining favourable orientation relationships and interface planes: Application to titanium–titanium hydrides transformations[J]. Acta Materialia, 2007, 55(3): 785-798. doi: 10.1016/j.actamat.2006.06.061 [18] CONFORTO E, CAILLARD D. Edge-to-edge matching at Ti-TiH interfaces: kinetics of hydride growth and clustering of precipitates with different orientation relationships[J]. Solid State Phenomena, 2011, 242-247. [19] WANG Q, XU S, LECOMTE J S, et al. Crystallographic orientation dependence of hydride precipitation in commercial pure titanium[J]. Acta Materialia, 2019, 183. [20] WEN N F E. Determination of orientation relationships between FCC-hydride and HCP-titanium and their correlation with hydrides distribution[J]. Journal of Alloys and Compounds, 2020, 817. [21] CHEN C Q, LI S X, ZHENG H, et al. An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents[J]. Acta Materialia, 2004, 52(12): 3697-3706. doi: 10.1016/j.actamat.2004.04.024 [22] LUPPO M I, POLITI A, VIGNA G. Hydrides in α-Ti: Characterization and effect of applied external stresses[J]. Acta Materialia, 2005, 53(19): 4987-4996. doi: 10.1016/j.actamat.2005.06.004 [23] TAN Q, YAN Z, LI R, et al. In-situ synchrotron-based high energy X-ray diffraction study of the deformation mechanism of δ-hydrides in a commercially pure titanium[J]. Scripta Materialia, 2022, 213. [24] SPURLING P R. Hydride habit planes in titanium-aluminum alloys[J]. Metallurgical&Materials Transactions A, 1976, 1769-1774. [25] XIAO H Z. On the mechanism of hydride formation in α-Ti alloys[J]. Scripta Metallurgica et Materialia, 1992, 27(5): 571-576. doi: 10.1016/0956-716X(92)90342-C [26] WEATHERLY G C. The precipitation of γ-hydride plates in zirconium[J]. Acta Materialia, 1981, 29(3): 501-512. doi: 10.1016/0001-6160(81)90074-2 [27] CARPENTER G J C. The precipitation of γ-zirconium hydride in zirconium[J]. Acta Materialia, 1978, 26(8): 1225-1235. doi: 10.1016/0001-6160(78)90006-8 [28] ZHAO H, HU X, SONG M, et al. Mechanisms for deformation induced hexagonal close-packed structure to face-centered cubic structure transformation in zirconium[J]. Scripta Materialia, 2017(132): 63-67. [29] CONFORT E, GUILLOT I, FEAUGAS X. Solute hydrogen and hydride phase implications on the plasticity of zirconium and titanium alloys: a review and some recent advances[J]. Mathematical, Physical and Engineering Sciences, 2017(375). -
下载: