Kinetic study on dehydration behavior of titanium dioxide supported by denitration catalyst
-
摘要: 脱硝催化剂载体二氧化钛的脱水是制备过程中的关键控制环节。通过测定不同升温速率下脱硝催化剂载体二氧化钛热分析曲线,研究了不同气氛下脱硝催化剂载体二氧化钛的脱水行为动力学和反应机理。结果表明,脱硝催化剂载体二氧化钛的脱水行为与煅烧的气氛紧密相关,在含氧气氛和无氧气氛下脱水速度不同,含氧气氛下开始脱水较快,然后缓慢脱水到反应结束;无氧气氛则缓慢完成。采用无模函数和有模函数的方法进行了动力学计算,结果表明,脱硝催化剂载体二氧化钛的脱水行为在含氧气氛下符合Avrami-Erofeev方程,无氧气氛下符合幂函数法则,脱水过程受到晶核的形成和晶核长大的影响。Abstract: The dehydration of denitration catalyst carrier titanium dioxide is a key control step in the preparation process. By measuring the thermal analysis curves of denitration catalyst carrier titanium dioxide at different heating rates, the dehydration kinetics and reaction mechanism of denitration catalyst carrier titanium dioxide under different atmospheres were studied. The results indicate that the dehydration behavior of titanium dioxide as the carrier of denitrification catalyst is closely related to the calcination atmosphere. The dehydration rate is different in oxygen-containing and oxygen-free atmosphere. Dehydration starts faster in oxygen-containing atmosphere, and then slowly dehydrates until the reaction ends, while dehydration completes slowly in oxygen-free atmosphere. Kinetic calculations were carried out by using the methods of modularless function and modularized function. The results show that the dehydration behavior of titanium dioxide, the support of denitration catalyst, conforms to the Avrami Erofeev equation in oxygen-containing atmosphere, and conforms to the power function rule in oxygen-free atmosphere. The dehydration process is affected by the formation and growth of crystal nuclei.
-
Key words:
- titanium dioxide /
- denitration catalyst /
- dehydration /
- kinetics /
- atmosphere
-
表 1 不同气氛下脱硝催化剂载体二氧化钛脱水反应的$ \alpha -T $数据
Table 1. $ \mathit{\alpha }-\mathit{T} $ data of the dehydrating reaction of denitration catalyst carrier titanium dioxide in different atmospheres
Reaction extent Tair atmosphere/K Tnitrogen atmosphere/K 5 ℃/min 10 ℃/min 15 ℃/min 20 ℃/min 5 ℃/min 10 ℃/min 15 ℃/min 20 ℃/min 0.05 66.02 72.88 73.95 78.48 66.68 73.67 74.38 73.42 0.10 116.32 123.51 124.44 128.92 117.48 124.27 124.95 123.91 0.15 166.75 174.20 175.08 179.52 168.05 174.85 175.46 174.50 0.20 217.17 224.65 225.46 229.89 218.45 255.26 225.91 224.90 0.25 267.43 274.91 275.64 280.05 268.67 275.46 276.06 275.14 0.30 317.51 325.00 325.67 330.17 318.73 325.51 326.08 325.20 0.35 367.47 374.86 375.69 380.11 368.68 375.45 376.09 375.27 0.40 417.34 424.76 425.53 429.95 418.53 425.32 425.95 425.17 0.45 467.07 474.61 475.36 479.78 468.33 475.17 475.76 475.01 0.50 516.87 524.46 525.19 529.62 518.11 525.02 525.57 524.86 0.55 566.69 574.34 575.01 579.54 567.86 574.86 575.49 574.71 0.60 616.47 624.20 624.85 629.38 617.63 624.72 625.32 624.55 0.65 666.17 674.09 674.80 679.22 667.39 674.58 675.14 674.41 0.70 715.98 723.97 724.65 729.08 717.19 724.43 725.09 724.28 0.75 765.81 773.74 774.53 778.93 766.97 774.29 774.92 774.08 0.80 815.65 823.62 824.40 828.83 816.76 824.08 824.71 823.81 0.85 865.38 873.37 874.11 878.56 866.53 873.73 874.38 873.50 表 2 机理函数的积分形式和微分形式
Table 2. Integral and differential forms of mechanism functions
Function number Integral form Differential form 12# $ {[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)]}^{2/5} $ $ \dfrac{5}{2}(1-\alpha ){[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)]}^{3/5} $ 18# $ {[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)]}^{2} $ $ \dfrac{1}{2}(1-\alpha ){[-\mathrm{l}\mathrm{n}\left(1-\alpha \right)]}^{-1} $ 25# $ \alpha $ 1 表 3 不同气氛下脱硝催化剂二氧化钛脱水反应动力学计算结果
Table 3. Kinetics of dehydration reaction under different atmospheres
Function Air atmosphere Nitrogen atmosphere E/(kJ·mol−1) lnA/s−1 R E/(kJ·mol−1) lnA/s−1 R 12# $ {\alpha }_{1} $=5 14.16 25.51 0.9764 15.57 26.44 0.9826 $ {\alpha }_{2} $=10 15.12 26.41 0.9813 14.45 26.17 0.9365 $ {\alpha }_{3} $=15 15.16 36.81 0.9804 13.91 26.66 0.9362 $ {\alpha }_{4} $=20 15.17 27.06 0.9816 14.28 26.92 0.9441 18# $ {\alpha }_{1} $=5 34.05 29.49 0.9122 32.59 28.01 0.9632 $ {\alpha }_{2} $=10 34.17 29.68 0.9269 31.47 28.88 0.9517 $ {\alpha }_{3} $=15 34.36 30.15 0.9194 30.96 29.55 0.9508 $ {\alpha }_{4} $=20 36.32 31.20 0.9327 31.29 29.84 0.9514 25# $ {\alpha }_{1} $=5 20.03 26.19 0.9362 20.09 26.23 0.9745 $ {\alpha }_{2} $=10 20.55 26.89 0.9509 19.06 26.17 0.9532 $ {\alpha }_{3} $=15 20.62 27.29 0.9454 18.45 26.41 0.9527 $ {\alpha }_{4} $=20 21.21 27.81 0.9502 19.21 27.46 0.9787 表 4 不同升温速率下热失重曲线峰值温度
Table 4. Peak temperature of the thermogravimetric curve at different heating rates
Heating rate/( ℃·min−1) Sample mode $ {T}_{\mathrm{p}} $/K $ {\beta }_{1} $=5 BA01-01 435.61 SA90 765.58 SA100 810.63 SA200 811.22 $ {\beta }_{2} $=10 BA01-01 448.32 SA90 778.29 SA100 823.34 SA200 823.93 $ {\beta }_{3} $=15 BA01-01 456.12 SA90 786.09 SA100 831.14 SA200 831.73 $ {\beta }_{4} $=20 BA01-01 461.8 SA90 791.79 SA100 836.84 SA200 837.43 $ {\beta }_{5} $=25 BA01-01 466.29 SA90 796.26 SA100 841.31 SA200 841.90 表 5 脱硝催化剂载体二氧化钛失重分析
Table 5. Analysis of weight loss of TiO2 as denitration catalyst carrier
Serial number Water loss rate/% Sulfate loss rate/% SA90 12.32 1.63 SA100 3.55 2.3 SA200 3.56 1.74 -
[1] GONG J Z. Titanium dioxide pigment manufacture technology[M]. Beijing: Chemical Industry Press, 2022. (龚家竹. 钛白粉生产技术[M]. 北京: 化学工业出版社, 2022.GONG J Z. Titanium dioxide pigment manufacture technology[M]. Beijing: Chemical Industry Press, 2022. [2] ZHANG X B, ZHANG J, ZHANG C, et al. Preparation of titanium dioxide thin films and photocatalytic properties[J]. Shandong Ceramics, 2019, 42(3): 9-12. (张新宝, 张健, 张超, 等. 二氧化钛薄膜的制备及其光催化性能研究[J]. 山东陶瓷, 2019, 42(3): 9-12.ZHANG X B, ZHANG J, ZHANG C, et al. Preparation of titanium dioxide thin films and photocatalytic properties[J]. Shandong Ceramics, 2019, 42(3): 9-12. [3] QIN R. Preparation, modification and photocatalytic properties of titanium dioxide photocatalytic catalyst[D]. Hefei: Anhui University, 2019. (秦锐. 二氧化钛光催化剂的制备、改性及光催化性能研究[D]. 合肥: 安徽大学, 2019.QIN R. Preparation, modification and photocatalytic properties of titanium dioxide photocatalytic catalyst[D]. Hefei: Anhui University, 2019. [4] HAMILTON J W J, BYRNE J A, DUNLOP P S M, et al. Evaluating the mechanism of visible light activity for N, F-TiO2 using photo electrochemistry[J]. Journal of Physical Chemistry C, 2014, 118(23): 12206-12209. doi: 10.1021/jp4120964 [5] LUO J, HAO Q, JIANG M C, et al. Preparation of titanium dioxide nanoparticles with ultrafast fiber laser research of preparation titanium dioxide nanoparticles with ultrafast fiber laser ablation[J]. Applied Laser, 2016, 36(5): 516-520. (罗浆, 郝强, 蒋梦慈, 等. 超快光纤激光制备二氧化钛纳米颗粒的研究[J]. 应用激光, 2016, 36(5): 516-520. doi: 10.14128/j.cnki.al.20163605.516LUO J, HAO Q, JIANG M C, et al. Preparation of titanium dioxide nanoparticles with ultrafast fiber laser research of preparation titanium dioxide nanoparticles with ultrafast fiber laser ablation[J]. Applied Laser, 2016, 36(5): 516-520. doi: 10.14128/j.cnki.al.20163605.516 [6] YANG C P, ZHAO L Q, YI C Q, et al. Optimization of process conditions for preparation nanosilicon doxides by precipitation method[J]. Chemical Engineering Design Communications, 2021, 47(7): 69-81. (杨长丕, 赵利启, 易重庆, 等. 沉淀法制备纳米二氧化硅的工艺条件优化[J]. 化工设计通讯, 2021, 47(7): 69-81. doi: 10.3969/j.issn.1003-6490.2021.07.034YANG C P, ZHAO L Q, YI C Q, et al. Optimization of process conditions for preparation nanosilicon doxides by precipitation method[J]. Chemical Engineering Design Communications, 2021, 47(7): 69-81. doi: 10.3969/j.issn.1003-6490.2021.07.034 [7] ZHOU Q G. Preparation and optical properties of titanium dioxide thin films by sol-gel method[J]. World Nonferrous Metals, 2018(22): 210-211. (周歧刚. 溶胶-凝胶法制备二氧化钛薄膜及其光学性质研究[J]. 世界有色金属, 2018(22): 210-211.ZHOU Q G. Preparation and optical properties of titanium dioxide thin films by sol-gel method[J]. World Nonferrous Metals, 2018(22): 210-211. [8] ZHAO T, CHEN M Y, WANG Z R, et al. Study on preparation and application of TiO2 powder[J]. Shandong Chemical Industry, 2019, 48(3): 40-41. (赵恬, 陈美延, 王仲锐, 等. TiO2粉末的制备和应用研究[J]. 山东化工, 2019, 48(3): 40-41. doi: 10.3969/j.issn.1008-021X.2019.03.020ZHAO T, CHEN M Y, WANG Z R, et al. Study on preparation and application of TiO2 powder[J]. Shandong Chemical Industry, 2019, 48(3): 40-41. doi: 10.3969/j.issn.1008-021X.2019.03.020 [9] LIU H E, YU L, TIAN G F, et al. Preparation of nano-TiO2 with {001} facets via microemulsion-solvothermal method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(3): 170-176. (刘会娥, 于磊, 田关峰, 等. 微乳溶剂热法制备暴露{001}晶面的纳米 TiO2[J]. 中国石油大学学报(自然科学版), 2020, 44(3): 170-176.LIU H E, YU L, TIAN G F, et al. Preparation of nano-TiO2 with {001} facets via microemulsion-solvothermal method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(3): 170-176. [10] DENG K. Analysis on process for preparing titanium dioxide by gas phase oxidation of titanium tetrachloride[J]. Chlor-Alkali Industry, 2018, 54(12): 25-31. (邓科. 四氯化钛气相氧化制备二氧化钛的工艺过程分析[J]. 氯碱工业, 2018, 54(12): 25-31. doi: 10.3969/j.issn.1008-133X.2018.12.010DENG K. Analysis on process for preparing titanium dioxide by gas phase oxidation of titanium tetrachloride[J]. Chlor-Alkali Industry, 2018, 54(12): 25-31. doi: 10.3969/j.issn.1008-133X.2018.12.010 [11] MA L. Chemical gas phase deposition of in situ synthetic transition metal and carbon nanotube composite modified titanium dioxide photocatalytic material[D]. Shanghai: East China University of Technology, 2012. (马磊. 化学气相沉积原位合成过渡金属和碳纳米管复合改性二氧化钛光催化材料[D]. 上海: 华东理工大学, 2012.MA L. Chemical gas phase deposition of in situ synthetic transition metal and carbon nanotube composite modified titanium dioxide photocatalytic material[D]. Shanghai: East China University of Technology, 2012. [12] ZHAO Y Z, SUN J J, LI J, et al. Synthesis of high purity TiO2 powders by fluidized gas hydrolysis[J]. CIESC Journal, 2017, 68(10): 3978-3984. (赵玉仲, 孙建军, 李军, 等. 流化床气相水解制备高纯二氧化钛[J]. 化工学报, 2017, 68(10): 3978-3984. doi: 10.11949/j.issn.0438-1157.20170515ZHAO Y Z, SUN J J, LI J, et al. Synthesis of high purity TiO2 powders by fluidized gas hydrolysis[J]. CIESC Journal, 2017, 68(10): 3978-3984. doi: 10.11949/j.issn.0438-1157.20170515 [13] LI J W, FU M, DONG F, et al. Preparation of N-doped nano-TiO2 photocatalyst using metatitanic acid and photocatalytic performance under visible light irradiation[J]. Journal of Synthetic Crystals, 2014, 43(4): 972-979. (黎经纬, 付敏, 董帆, 等. 以偏钛酸浆料制备氮掺杂纳米二氧化钛及其可见光催化性能研究[J]. 人工晶体学报, 2014, 43(4): 972-979.LI J W, FU M, DONG F, et al. Preparation of N-doped nano-TiO2 photocatalyst using metatitanic acid and photocatalytic performance under visible light irradiation[J]. Journal of Synthetic Crystals, 2014, 43(4): 972-979. [14] ZHAO D. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2019. (赵顶. 纳米TiO2-x的制备及其对砷离子吸附特性的研究[D]. 昆明: 昆明理工大学, 2019.ZHAO D. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2019. [15] MA W P. Effect of potassium hydroxide on calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 35-38. (马维平. 偏钛酸煅烧过程中氢氧化钾作用研究[J]. 钢铁钒钛, 2019, 40(4): 35-38. doi: 10.7513/j.issn.1004-7638.2019.04.007MA W P. Effect of potassium hydroxide on calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 35-38. doi: 10.7513/j.issn.1004-7638.2019.04.007 [16] BI Y, WANG G S. Dehydration kinetics study on potassium calcium borate[J]. Journal of Synthetic Crystals, 2018, 47(12): 2436-2440. (毕颖, 王国胜. 硼酸钾钙晶体的脱水动力学研究[J]. 人工晶体学报, 2018, 47(12): 2436-2440. doi: 10.16553/j.cnki.issn1000-985x.2018.12.003BI Y, WANG G S. Dehydration kinetics study on potassium calcium borate[J]. Journal of Synthetic Crystals, 2018, 47(12): 2436-2440. doi: 10.16553/j.cnki.issn1000-985x.2018.12.003 [17] ZOU J X, CUI X M, PENG F C, et al. Thermodynamics of Ti, V and their chemical compounds[M]. Beijing: Metallurgical Industry Press, 2018. (邹建新, 崔旭梅, 彭富昌, 等. 钒钛化合物及热力学[M]. 北京: 冶金工业出版社, 2018.ZOU J X, CUI X M, PENG F C, et al. Thermodynamics of Ti, V and their chemical compounds[M]. Beijing: Metallurgical Industry Press, 2018. [18] ZHAI W R, XU B Q, CHEN S F, et al. Dehydration kinetics study on metatitanic acid in different atmosphere[J]. Materials Reports, 2021, 35(20): 20016-20021. (翟蔚然, 徐宝强, 陈思峰, 等. 不同气氛下偏钛酸脱水行为动力学研究[J]. 材料导报, 2021, 35(20): 20016-20021.ZHAI W R, XU B Q, CHEN S F, et al. Dehydration kinetics study on metatitanic acid in different atmosphere[J]. Materials Reports, 2021, 35(20): 20016-20021. [19] HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. Beijing: Science Press, 2008. (胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 北京: 科学出版社, 2008.HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. Beijing: Science Press, 2008. [20] JIU S W, CHEN Y X, LI H, et al. Kinetic study of the thermal dehydration of phosphogypsum[J]. Applied Chemical Industry, 2011, 40(3): 381-386. (酒少武, 陈延信, 李辉, 等. 磷石膏脱水反应动力学研究[J]. 应用化工, 2011, 40(3): 381-386. doi: 10.11973/lhjy-hx201510005JIU S W, CHEN Y X, LI H, et al. Kinetic study of the thermal dehydration of phosphogypsum[J]. Applied Chemical Industry, 2011, 40(3): 381-386. doi: 10.11973/lhjy-hx201510005 [21] ZHAI W R. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2021. (翟蔚然. 纳米TiO2的制备及其对砷离子光催化氧化吸附特性的研究[D]. 昆明: 昆明理工大学, 2021.ZHAI W R. Preparation of nano-TiO2-x and its study on the adsorption properties of arsenic ions[D]. Kunming: Kunming University of Science and Technology, 2021. -
下载: