中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg-Ti共掺杂LiNi0.5Mn1.5O4对提高材料结构稳定和电化学性能的协同效应研究

黄振德 彭迪

黄振德, 彭迪. Mg-Ti共掺杂LiNi0.5Mn1.5O4对提高材料结构稳定和电化学性能的协同效应研究[J]. 钢铁钒钛, 2025, 46(6): 98-105. doi: 10.7513/j.issn.1004-7638.2025.06.012
引用本文: 黄振德, 彭迪. Mg-Ti共掺杂LiNi0.5Mn1.5O4对提高材料结构稳定和电化学性能的协同效应研究[J]. 钢铁钒钛, 2025, 46(6): 98-105. doi: 10.7513/j.issn.1004-7638.2025.06.012
HUANG Zhende, PENG Di. Synergistic effect of Mg-Ti co-doped LiNi0.5Mn1.5O4 on improving material structural stability and electrochemical performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 98-105. doi: 10.7513/j.issn.1004-7638.2025.06.012
Citation: HUANG Zhende, PENG Di. Synergistic effect of Mg-Ti co-doped LiNi0.5Mn1.5O4 on improving material structural stability and electrochemical performance[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 98-105. doi: 10.7513/j.issn.1004-7638.2025.06.012

Mg-Ti共掺杂LiNi0.5Mn1.5O4对提高材料结构稳定和电化学性能的协同效应研究

doi: 10.7513/j.issn.1004-7638.2025.06.012
基金项目: 广西自然科学基金项目(2018GXXNSFAA294042);广西高校中青年教师科研基础能力提升项目(2021KY1280)。
详细信息
    作者简介:

    黄振德,1976年出生,男,广西南宁人,硕士,副教授,长期从事高能锂离子电池正极材料研发,E-mail:260013585@qq.com

    通讯作者:

    彭迪,1982年出生,女,广西河池人,本科,工程师,主要研究方向为新能源材料应用与工程项目管理,E-mail:2459811233@qq.com

  • 中图分类号: TM912

Synergistic effect of Mg-Ti co-doped LiNi0.5Mn1.5O4 on improving material structural stability and electrochemical performance

  • 摘要: 采用自聚合法合成Mg-Ti掺杂LNMO不同样品LiNi0.5-xMgxTiyMn1.5- y O4x= 0, 0.02; y= 0, 0.03)尖晶石正极材料。通过XRD、FTIR、SEM和EDS材料表征以及电化学性能测试,深入研究分析了Mg-Ti共掺杂LiNi0.5Mn1.5O4样品的晶体结构特征、微观形貌和掺杂元素分布等对充放电过程倍率性能和循环容量稳定性的影响。结果表明:Mg-Ti共掺杂可适当提高Mn3+含量,强化Fd3m空间群无序化程度,以及晶体粒径变小和分布更均匀,表现出更优异倍率性能和循环容量稳定性。在1C和10C不同倍率下,LiNi0.48Mg0.02Ti0.03Mn1.47O4材料放电容量分别为133 mAh/g与102 mAh/g,常温1C循环200次后放电容量仍为123 mAh/g,容量保持率92.5%。晶体结构和形貌对材料电化学影响结果表明,Mg-Ti共掺杂具有协同效应,对LiNi0.5Mn1.5O4的倍率性能和循环稳定性有着显著影响。
  • 图  1  Mg-Ti共掺杂LNMO不同样品XRD谱图

    (a)XRD总谱图;(b)局部放大

    Figure  1.  XRD spectra for different samples of Mg-Ti co-doped LNMO materials

    图  2  Mg-Ti共掺杂LNMO不同样品的FTIR谱图

    Figure  2.  FTIR spectra for different samples of Mg-Ti co-doped LNMO materials

    图  3  Mg-Ti共掺杂LNMO不同样品的SEM图

    Figure  3.  SEM images of different samples of Mg-Ti co-doped LNMO materials

    (a)P-LNMO; (b) M-LNMO; (c) T-LNMO; (d) MT-LNMO

    图  4  LiNi0.48Mg0.02Ti0.03Mn1.47O4样品Ni、Mn、Mg和Ti元素EDS图谱

    Figure  4.  EDS mapping images of Ni, Mn, Mg and Ti elements in the LiNi0.48Mg0.02Ti0.03Mn1.47O4 sample

    图  5  Mg-Ti共掺杂LNMO不同样品的首次充放电容量

    Figure  5.  Initial charge-discharge curves for different samples of Mg-Ti co-doped LNMO materials

    图  6  Mg-Ti共掺杂LNMO不同样品的倍率性能

    Figure  6.  Rate performance for different samples of Mg-Ti codoped LNMO materials

    图  7  Mg-Ti共掺杂LNMO不同样品的充放电循环性能

    Figure  7.  Cycling performance for different samples of Mg-Ti co-doped LNMO materials

    图  8  Mg-Ti共掺杂LNMO不同样品的循环伏安测试

    Figure  8.  Cyclic voltammograms for different samples of Mg-Ti co-doped LNMO materials

    图  9  Mg-Ti共掺杂LNMO不同样品的电化学阻抗谱

    Figure  9.  Electrochemical impedance spectroscopy for different samples of Mg-Ti co-doped LNMO materials

  • [1] LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials[J]. Angewandte Chemie International Edition, 2019, 58(31): 10478-10485. doi: 10.1002/anie.201904469
    [2] PARK S, JEONG S Y, LEE T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications, 2021, 12: 838. doi: 10.1038/s41467-021-21106-6
    [3] LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12(1): 39. doi: 10.1038/s41467-020-20297-8
    [4] HOU J, LU L, WANG L, et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2 based concentrated electrolytes[J]. Nature Communications, 2020, 11: 5100. doi: 10.1038/s41467-020-18868-w
    [5] LIU H, LIANG G, GAO C, et al. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries[J]. Nano Energy, 2019, 66: 104100. doi: 10.1016/j.nanoen.2019.104100
    [6] SUN W, LI Y, XIE K, et al. Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries[J]. Nano Energy, 2018, 54: 175-183. doi: 10.1016/j.nanoen.2018.10.006
    [7] YU X, YU W A, MANTHIRAM A, et al. Advances and prospects of high-voltage spinel cathodes for lithium-based batteries[J]. Small Methods, 2021, 5(5): 2001196. doi: 10.1002/smtd.202001196
    [8] LIANG G, PETERSON V K, SEE K W, et al. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects[J]. Journal of Materials Chemistry A, 2020, 8: 15373-15398. doi: 10.1039/D0TA02812F
    [9] LIANG W, WANG P, DING H, et al. Granularity control enables high stability and elevated temperature properties of micron-sized single-crystal LiNi0.5Mn1.5O4 cathodes at high voltage[J]. Journal of Materiomics, 2021, 7(5): 1049-1060. doi: 10.1016/j.jmat.2021.02.003
    [10] GUO J, LI Y, CHEN Y, et al. Stable interface Co3O4 coated LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 811: 152031. doi: 10.1016/j.jallcom.2019.152031
    [11] LIU D, FAN X, LI Z, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium-ion batteries[J]. Nano Energy, 2019, 58: 786-796. doi: 10.1016/j.nanoen.2019.01.080
    [12] LIANG G, WU Z, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie International Edition, 2020, 59(26): 10594-10602. doi: 10.1002/anie.202001454
    [13] GAO Y, YU H, SANDINENI P, et al. Fe doping in LiNi0.5Mn1.5O4 by atomic layer deposition followed by annealing: depths and occupation sites[J]. The Journal of Physical Chemistry C, 2021, 125(14): 7560-7567. doi: 10.1021/acs.jpcc.1c00225
    [14] WEI A, MU J, HE R, et al. Enhancing electrochemical performance and structural stability of LiNi0.5Mn1.5O4 cathode material for rechargeable lithium-ion batteries by boron doping[J]. Ceramics International, 2021, 47(1): 226-237. doi: 10.1016/j.ceramint.2020.08.125
    [15] LI X, ZHANG Y, LI W, et al. The synergetic effect of LiMg0.5Mn1.5O4 coating and Mg2+ doping on improving electrochemical performances of high-voltage LiNi0.5Mn1.5O4 by sol-gel selfcombustion method[J]. ChemistrySelect, 2020, 5(8): 2593-2601. doi: 10.1002/slct.201904719
    [16] GUAN P, ZHOU L, YU Z, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235.
    [17] WEI L, TAO J, YANG Y, et al. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: 122268.
    [18] CHU C T, MONDAL A, KOSOVA N V, et al. Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries[J]. Applied Surface Science, 2020, 530: 147169. doi: 10.1016/j.apsusc.2020.147169
    [19] MU J, ZHANG L, HE R, et al. Enhancing the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a conductive LaCoO3 coating[J]. Journal of Alloys and Compounds, 2021, 865: 158629. doi: 10.1016/j.jallcom.2021.158629
    [20] YOON T, SOON J, LEE T J, et al. Dissolution of cathode-electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Journal of Power Sources, 2021, 503: 230051. doi: 10.1016/j.jpowsour.2021.230051
    [21] MA D H, WANG J W, WANG H F, et al. Mg2+ and Cr3+ Co-doped LiNi0.5Mn1.5O4 derived from Ni/Mn bimetal oxide as high-performance cathode for lithium-ion batteries[J]. Nanomaterials, 2025, 15(6): 429.
    [22] ZHENG X Y, LIU W J, QU Q T, et al. Bi-functions of titanium and lanthanum co-doping to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode[J]. Journal of Materiomics, 2019, 5(2): 156-163.
    [23] WEI A, LI W, CHANG Q, et al. Effect of Mg2+/Fco-doping on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries[J]. Electrochimica Acta, 2019, 323: 134692. doi: 10.1016/j.electacta.2019.134692
    [24] CHEN G, AN J, MENG Y, et al. Cation and anion co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165. doi: 10.1016/j.nanoen.2018.12.049
    [25] KIM J H, MYUANG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. doi: 10.1021/cm035050s
    [26] LIU R R, DENG X, LIU X R, et al. Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy[J]. Chemical Communications, 2014, 50(99): 15756-15759. doi: 10.1039/C4CC07290A
    [27] HSU C S, HSIAO Y S, ZHANG C, et al. The effect of dual-doping on the electrochemical performance of LiNi0.5Mn1.5O4 and its application in full-cell lithium-ion batteries[J]. Ceramics International, 2022, 48(10): 14778-14788. doi: 10.1016/j.ceramint.2022.02.015
    [28] TU J G, ZHANG B K, LI Y, et al. Comprehensive crystal structural insights into phase evolution of spinel Co-free lithium nickel manganese oxide[J]. ACS Energy Letters, 2025, 10(8): 1892-1910.
    [29] WU L B, WANG S, NIU Y, et al. High-rate LiNi0.5Mn1.5O4 cathode materials for Li-ion batteries by the strategy of multi-ion co-doping[J]. Chemical Engineering Journal, 2025, 516: 163892.
    [30] MU J P, WEI A J, HE R, et al. Exploring the synergistic effect of Li+and Brco-doping on improving the microstructural and electrochemical performances of LiNi0.5Mn1.5O4 cathode materials[J]. Journal of the Taiwan Insititue of Chemical Engineers, 2022, 138: 104437. doi: 10.1016/j.jtice.2022.104437
    [31] KOCAK T, WU L Y, WANG J, et al. The effect of vanadium doping on the cycling performance of LiNi0.5Mn1.5O4 spinel cathode for high voltage lithium-ion batteries[J]. Journal of Electroanalytical chemistry, 2021, 881: 114926. doi: 10.1016/j.jelechem.2020.114926
    [32] ZONG B, LANG Y Q, YAN S H, et al. Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries[J]. Materials Today Communications, 2020, 24: 101003. doi: 10.1016/j.mtcomm.2020.101003
    [33] LIN F C, GUO J B, WANG L Y, et al. Synergistic effect of Mg and Y co-dopants on enhancement of electrochemical properties of LiNi0.5Mn1.5O4 spinel[J]. Electrochimica Acta, 2021, 399: 139433.
    [34] WANG J, NIE Y, MIAO C, et al. Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+and Ti4+ co-doping for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 601: 853-862. doi: 10.1016/j.jcis.2021.05.167
  • 加载中
图(9)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 录用日期:  2025-06-19
  • 修回日期:  2025-06-14
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回