| [1] |
LEE S, JIN W, KIM S H, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials[J]. Angewandte Chemie International Edition, 2019, 58(31): 10478-10485. doi: 10.1002/anie.201904469
|
| [2] |
PARK S, JEONG S Y, LEE T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications, 2021, 12: 838. doi: 10.1038/s41467-021-21106-6
|
| [3] |
LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoOx-MoPx promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12(1): 39. doi: 10.1038/s41467-020-20297-8
|
| [4] |
HOU J, LU L, WANG L, et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2 based concentrated electrolytes[J]. Nature Communications, 2020, 11: 5100. doi: 10.1038/s41467-020-18868-w
|
| [5] |
LIU H, LIANG G, GAO C, et al. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries[J]. Nano Energy, 2019, 66: 104100. doi: 10.1016/j.nanoen.2019.104100
|
| [6] |
SUN W, LI Y, XIE K, et al. Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries[J]. Nano Energy, 2018, 54: 175-183. doi: 10.1016/j.nanoen.2018.10.006
|
| [7] |
YU X, YU W A, MANTHIRAM A, et al. Advances and prospects of high-voltage spinel cathodes for lithium-based batteries[J]. Small Methods, 2021, 5(5): 2001196. doi: 10.1002/smtd.202001196
|
| [8] |
LIANG G, PETERSON V K, SEE K W, et al. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects[J]. Journal of Materials Chemistry A, 2020, 8: 15373-15398. doi: 10.1039/D0TA02812F
|
| [9] |
LIANG W, WANG P, DING H, et al. Granularity control enables high stability and elevated temperature properties of micron-sized single-crystal LiNi0.5Mn1.5O4 cathodes at high voltage[J]. Journal of Materiomics, 2021, 7(5): 1049-1060. doi: 10.1016/j.jmat.2021.02.003
|
| [10] |
GUO J, LI Y, CHEN Y, et al. Stable interface Co3O4 coated LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 811: 152031. doi: 10.1016/j.jallcom.2019.152031
|
| [11] |
LIU D, FAN X, LI Z, et al. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium-ion batteries[J]. Nano Energy, 2019, 58: 786-796. doi: 10.1016/j.nanoen.2019.01.080
|
| [12] |
LIANG G, WU Z, DIDIER C, et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping[J]. Angewandte Chemie International Edition, 2020, 59(26): 10594-10602. doi: 10.1002/anie.202001454
|
| [13] |
GAO Y, YU H, SANDINENI P, et al. Fe doping in LiNi0.5Mn1.5O4 by atomic layer deposition followed by annealing: depths and occupation sites[J]. The Journal of Physical Chemistry C, 2021, 125(14): 7560-7567. doi: 10.1021/acs.jpcc.1c00225
|
| [14] |
WEI A, MU J, HE R, et al. Enhancing electrochemical performance and structural stability of LiNi0.5Mn1.5O4 cathode material for rechargeable lithium-ion batteries by boron doping[J]. Ceramics International, 2021, 47(1): 226-237. doi: 10.1016/j.ceramint.2020.08.125
|
| [15] |
LI X, ZHANG Y, LI W, et al. The synergetic effect of LiMg0.5Mn1.5O4 coating and Mg2+ doping on improving electrochemical performances of high-voltage LiNi0.5Mn1.5O4 by sol-gel selfcombustion method[J]. ChemistrySelect, 2020, 5(8): 2593-2601. doi: 10.1002/slct.201904719
|
| [16] |
GUAN P, ZHOU L, YU Z, et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235.
|
| [17] |
WEI L, TAO J, YANG Y, et al. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: 122268.
|
| [18] |
CHU C T, MONDAL A, KOSOVA N V, et al. Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries[J]. Applied Surface Science, 2020, 530: 147169. doi: 10.1016/j.apsusc.2020.147169
|
| [19] |
MU J, ZHANG L, HE R, et al. Enhancing the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a conductive LaCoO3 coating[J]. Journal of Alloys and Compounds, 2021, 865: 158629. doi: 10.1016/j.jallcom.2021.158629
|
| [20] |
YOON T, SOON J, LEE T J, et al. Dissolution of cathode-electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Journal of Power Sources, 2021, 503: 230051. doi: 10.1016/j.jpowsour.2021.230051
|
| [21] |
MA D H, WANG J W, WANG H F, et al. Mg2+ and Cr3+ Co-doped LiNi0.5Mn1.5O4 derived from Ni/Mn bimetal oxide as high-performance cathode for lithium-ion batteries[J]. Nanomaterials, 2025, 15(6): 429.
|
| [22] |
ZHENG X Y, LIU W J, QU Q T, et al. Bi-functions of titanium and lanthanum co-doping to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode[J]. Journal of Materiomics, 2019, 5(2): 156-163.
|
| [23] |
WEI A, LI W, CHANG Q, et al. Effect of Mg2+/F−co-doping on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries[J]. Electrochimica Acta, 2019, 323: 134692. doi: 10.1016/j.electacta.2019.134692
|
| [24] |
CHEN G, AN J, MENG Y, et al. Cation and anion co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165. doi: 10.1016/j.nanoen.2018.12.049
|
| [25] |
KIM J H, MYUANG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. doi: 10.1021/cm035050s
|
| [26] |
LIU R R, DENG X, LIU X R, et al. Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy[J]. Chemical Communications, 2014, 50(99): 15756-15759. doi: 10.1039/C4CC07290A
|
| [27] |
HSU C S, HSIAO Y S, ZHANG C, et al. The effect of dual-doping on the electrochemical performance of LiNi0.5Mn1.5O4 and its application in full-cell lithium-ion batteries[J]. Ceramics International, 2022, 48(10): 14778-14788. doi: 10.1016/j.ceramint.2022.02.015
|
| [28] |
TU J G, ZHANG B K, LI Y, et al. Comprehensive crystal structural insights into phase evolution of spinel Co-free lithium nickel manganese oxide[J]. ACS Energy Letters, 2025, 10(8): 1892-1910.
|
| [29] |
WU L B, WANG S, NIU Y, et al. High-rate LiNi0.5Mn1.5O4 cathode materials for Li-ion batteries by the strategy of multi-ion co-doping[J]. Chemical Engineering Journal, 2025, 516: 163892.
|
| [30] |
MU J P, WEI A J, HE R, et al. Exploring the synergistic effect of Li+and Br−co-doping on improving the microstructural and electrochemical performances of LiNi0.5Mn1.5O4 cathode materials[J]. Journal of the Taiwan Insititue of Chemical Engineers, 2022, 138: 104437. doi: 10.1016/j.jtice.2022.104437
|
| [31] |
KOCAK T, WU L Y, WANG J, et al. The effect of vanadium doping on the cycling performance of LiNi0.5Mn1.5O4 spinel cathode for high voltage lithium-ion batteries[J]. Journal of Electroanalytical chemistry, 2021, 881: 114926. doi: 10.1016/j.jelechem.2020.114926
|
| [32] |
ZONG B, LANG Y Q, YAN S H, et al. Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries[J]. Materials Today Communications, 2020, 24: 101003. doi: 10.1016/j.mtcomm.2020.101003
|
| [33] |
LIN F C, GUO J B, WANG L Y, et al. Synergistic effect of Mg and Y co-dopants on enhancement of electrochemical properties of LiNi0.5Mn1.5O4 spinel[J]. Electrochimica Acta, 2021, 399: 139433.
|
| [34] |
WANG J, NIE Y, MIAO C, et al. Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+and Ti4+ co-doping for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 601: 853-862. doi: 10.1016/j.jcis.2021.05.167
|