Titanium 3D printing and its application in biomedical implants
-
摘要: 钛及钛合金具有优越的生物相容性、耐腐蚀性和机械特性,是少数可以安全地植入人体的金属材料,并应用于生物医学,包括植入物、牙科、手术工具、支架、组织工程和体外医疗器械。传统的钛及钛合金生物医学植入物采用减材和成型工艺制造。近年来,随着增材制造(3D打印)技术的发展,生物医学植入物制造可以直接使用来自医学成像获得的数据构建模型,并通过增材制造成型。增材制造生物医学植入物主要应用的技术为激光选区熔化(SLM)、电子束熔化(EBM)和定向能量沉积(DED)。纯钛(CP-Ti)和钛合金(Ti-64)是生物医学应用中最常见的钛金属材料。与传统制造方法相比,增材制造的关键优势是其多维度和个性化制造,且更具可重复性。为了更新钛和钛合金的生物医学植入物研究进展,综述了钛和钛合金、3D打印方法以及钛金属3D打印在生物医学中的应用,讨论和总结了3D打印的钛金属植入物在生物医学中的最新发展,并探讨了钛金属3D打印生物医学植入物的未来研究方向。Abstract: Titanium and titanium alloys possess superior biocompatibility, corrosion resistance, and mechanical properties, making them among the few metal materials safe for implantation in the human body. They are widely used in biomedical applications, including implants, dentistry, surgical instruments, stents, tissue engineering, and in vitro medical devices. Biomedical implants made of titanium and titanium alloys are traditionally manufactured through subtractive and forming processes. In recent years, with the advancement of additive manufacturing (3D printing) technology, biomedical implants can now be directly fabricated using data from medical imaging methods, enabling the three-dimensional additive connection of titanium materials to produce components. Selective laser melting (SLM), electron beam melting (EBM), and directed energy deposition (DED) are the primary technologies for the additive manufacturing of titanium components. The most commonly used additive manufacturing titanium materials in biomedical applications are commercially pure titanium (CP-Ti) and titanium alloys (Ti-64). Compared to traditional manufacturing methods, the key advantages of additive manufacturing lie in its multidimensional and personalized production capabilities, along with greater reproducibility. To update the latest advancements in research on titanium and titanium alloy biomedical implants, this paper reviews titanium and titanium alloys, 3D printing methods, and their applications in biomedical implant. It discusses and summarizes the latest developments in 3D-printed titanium implants and explores future research directions for titanium-based 3D-printed biomedical implants.
-
Key words:
- titanium and titanium alloys /
- 3D printing /
- biomedical implant
-
图 7 创建个性化脊柱融合器的工作流程
(a)成像; (b)设计; (c)制造[106]
Figure 7. The workflow for creating personalized surgical plans and implants
-
[1] HLINKA J, KRAUS M, HAJNYS J, et al. Complex corrosion properties of AISI 316L steel prepared by 3D printing technology for possible implant applications[J]. Materials, 2020, 13(7): 1527. doi: 10.3390/ma13071527 [2] PRAMANIK S, AGARWAL A K, RAI K N. Chronology of total hip joint replacement and materials development[J]. Trends in Biomaterials & Artificial Organs, 2005, 19: 15-26. [3] RONY L, LANCIGU R, HUBERT L. Intraosseous metal implants in orthopedics: A review[J]. Morphologie, 2018, 102(339): 231-242. doi: 10.1016/j.morpho.2018.09.003 [4] ASTM I, ASTM52900-15 standard terminology for additive manufacturing-general principles-terminology[S]. ASTM International, West Conshohocken, PA, 2015, 3(4): 5. [5] DUTTA B, FROES F H S. The additive manufacturing (AM) of titanium alloys[M]. In: Titanium powder metallurgy. Elsevier, 2015: 447-468. [6] MILEWSKI J O. Additive manufacturing metal, the art of the possible[M]. In: Additive Manufacturing of Metals. Springer, 2017: 7-33. [7] POPOV V, MULLER-KAMSKII G, KATZ-DEMYANETZ A, et al. Additive manufacturing to veterinary practice: Recovery of bony defects after the osteosarcoma resection in canines[J]. Biomedical Engineering Letters, 2019, 9: 97-108. [8] GIBSON I, ROSEN D, STUCKER B, et al. Additive manufacturing technologies[M]. Springer, 2021: 491-524. [9] GIBSON I, ROSEN D W, STUCKER B. Printing processes, additive manufacturing technologies: rapid prototyping to direct digital manufacturing[M]. Springer, 2010: 187-222. [10] CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320. doi: 10.1016/j.actamat.2014.12.054 [11] SUN P, FANG Z Z, ZHANG Y, et al. Review of the methods for production of spherical Ti and Ti alloy powder[J]. JOM, 2017, 69: 1853-1860. doi: 10.1007/s11837-017-2513-5 [12] LIU Z, WELSCH G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys[J]. Metallurgical Transactions A, 1988, 19: 527-542. doi: 10.1007/BF02649267 [13] WELSCH G, BOYER R, COLLINGS E W. Materials properties handbook: titanium alloys[M]. ASM international, 1993. [14] CHENG L, SHOMA K, SURESH S, et al. 3D printing of micro-and nanoscale bone substitutes: A review on technical and translational perspectives[J]. International Journal of Nanomedicine, 2021, 16: 4289-4319. doi: 10.2147/IJN.S311001 [15] BANDYOPADHYAY A, GHOSH S, BOCCACCINI A R, et al. 3D printing of biomedical materials and devices[J]. Journal of Materials Research, 2021, 36: 3713-3724. doi: 10.1557/s43578-021-00407-y [16] ASHTIANI R E, ALAM M, TAVAKOLIZADEH S, et al. The Role of biomaterials and biocompatible materials in implant-supported dental prosthesis[J]. Evidence-Based Complementary and Alternative Medicine. 2021: 3349433. [17] ALBREKTSSON T, JOHANSSON C. Osteoinduction, osteoconduction and osseointegration[J]. European Spine Journal, 2001, 10(Suppl.S2): S96-S101. [18] CHEN Q, THOUAS G A. Metallic implant biomaterials[J]. Materials Science and Engineering: R: Reports, 2015, 87: 1-57. doi: 10.1016/j.mser.2014.10.001 [19] NI J, LING H, ZHANG S, et al. Three-dimensional printing of metals for biomedical applications[J]. Mater Today Bio, 2019, 3: 100024. doi: 10.1016/j.mtbio.2019.100024 [20] GEETHA M, SINGH A K, ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science, 2009, 54: 397-425. doi: 10.1016/j.pmatsci.2008.06.004 [21] LEYENS C, PETERS M. (Eds. ). Titanium and titanium alloys: Fundamentals and applications[M]. Wiley-VCH, Weinheim, 2005. [22] BRUNKE F, SIEMERS C, RÖSLER J. Second-generation titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison of the mechanical properties for implant applications[C]. MATEC Web of Conferences 321, 05006 (2020), The 14th World Conference on Titanium. [23] YEGANEH V E, LI P J. Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys[J]. Mater Design, 2017, 124: 78-86. doi: 10.1016/j.matdes.2017.03.056 [24] DAVIS J R. Metallic materials, handbook of materials for medical devices[M]. ASM International, 2003: 21-50. [25] LÜTJERING G, WILLIAMS J C. Titanium, 2nd ed[M]. Springer, Berlin Heidelberg, 2007. [26] VENKATESH B D, CHEN D L, BHOLE S D. Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy[J]. Materials Science and Engineering: A, 2009, 506(1-2): 117-124. doi: 10.1016/j.msea.2008.11.018 [27] MILOVANOVIĆ A, SEDMAK A, GRBOVIĆ A, et al. Design aspects of hip implant made of Ti-6Al-4V extra low interstitials alloy[J]. Procedia Structural Integrity, 2020, 26: 299-305. doi: 10.1016/j.prostr.2020.06.038 [28] KHANG D, LU J, YAO C, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium[J]. Biomaterials, 2008, 29(8): 970-983. doi: 10.1016/j.biomaterials.2007.11.009 [29] ZHANG L, CHEN L. A review on biomedical titanium alloys: recent progress and prospect[J]. Advanced Engineering Materials, 2019, 21(4): 1801215. doi: 10.1002/adem.201801215 [30] ELIAS C N , LIMA J H C, VALIEV R, et al. Biomedical applications of titanium and its alloys[J]. JOM, 2008, 60: 46-49. [31] DELANNOY S, BAÏZ S, LAHEURTE P, et al. Development of elastically graded titanium alloys for biomedical applications[C]. MATEC Web of Conferences 321, 05016 (2020), The 14th World Conference on Titanium. [32] ROBLING A G, CASTILLO A B, TURNER C H. Biomechanical and molecular regulation of bone remodeling[J]. Annual Review of Biomedical Engineering, 2006, 8: 455-498. [33] ZHOU M, CHENG Y, ZHOU X, et al. Titanium alloy medical implants based on additive manufacturing technology[J]. Scientia Sinica Technologica, 2016, 46: 1097-1115. doi: 10.1360/N092016-00046 [34] WALLY Z, VANGRUNSVEN W, CLAEYSSENS F, et al. Porous titanium for dental implant applications[J]. Metals, 2015, 5: 1902-1920. doi: 10.3390/met5041902 [35] YE C, ZHANG C, ZHAO J, et al. Effects of post-processing on the finish, porosity, residual stresses fatigue performance of additive manufactured metals: A review[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6407-6425. doi: 10.1007/s11665-021-06021-7 [36] KOSHY E, PHILIP S R, Dental implant surfaces: An overview[J]. International Journal of Clinical Implant Dentistry, 2015, 1(1): 14-22. [37] BANDYOPADHYAY A, ESPANA F, BALLA V K, et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants[J]. Acta Biomater, 2010, 6(4): 1640-1648. doi: 10.1016/j.actbio.2009.11.011 [38] EVANS F G. Mechanical properties and histology of cortical bone from younger and older men[J]. Anatomical Record, 1976, 185(1): 1-11. doi: 10.1002/ar.1091850102 [39] BURSTEIN A H, REILLY D T, MARTENS M. Aging of bone tissue: mechanical properties[J]. The Journal of Bone & Joint Surgery, 1976, 58(1): 82-86. [40] PRIEST N D. The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: review and study update[J]. Journal of Environmental Monitoring, 2004, 6: 375-403. doi: 10.1039/B314329P [41] NAGASAWA K, ITO S, KAKUDA T, et al, Transport mechanism for aluminum citrate at the blood-brain barrier: kinetic evidence implies involvement of system Xc- in immortalized rat brain endothelial cells[J]. Toxicology letters, 2005, 155: 289-296. [42] YOKEL R A, ALLEN D D, ACKLEY D C. The distribution of aluminum into and out of the brain[J]. Journal of Inorganic Biochemistry, 1999, 76: 127-132. doi: 10.1016/S0162-0134(99)00124-5 [43] SURMENEVA M, et al. Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles[J]. Applied Surface Science, 2019, 480: 822-829. doi: 10.1016/j.apsusc.2019.03.003 [44] ENTEZARIAN M, ALLAIRE F, TSANTRIZOS P, et al. Plasma atomization: A new process for the production of fine, spherical powders[J]. JOM, 1996, 48: 53-55. [45] MOLL J H. Utilization of gas-atomized titanium and titanium-aluminide powder[J]. JOM, 2000, 52(5): 32-34. doi: 10.1007/s11837-000-0030-3 [46] GHODS S, SCHULTZ E, WISDOMA C, et al. Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse[J]. Materialia, 2020, 9: 100631. doi: 10.1016/j.mtla.2020.100631 [47] GUO A, CHENG L, ZHAN S, et al. Biomedical applications of the powder-based 3D printed titanium alloys: A review[J]. Journal of Materials Science & Technology, 2022, 125: 252-264. [48] ANDREUCCI C A, FONSECA E M, JORGE R N. 3D printing as an efficient way to prototype and develop dental implants[J]. Biomed Informatics, 2022, 2(4): 671-679. [49] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213(4): 606-613. doi: 10.1016/j.jmatprotec.2012.11.014 [50] ABD‐ELGHANY K, BOURELL D L. Property evaluation of 304L stainless steel fabricated by selective laser melting[J]. Rapid Prototyping Journal, 2012, 18(5): 420-428. [51] SACHDEVA A, SINGH S, SHARMA V S. Investigating surface roughness of parts produced by SLS process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64: 1505-1516. [52] MURR L E, MARTINEZ E, HERNANDEZ J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2012, 1(3): 167-177. doi: 10.1016/S2238-7854(12)70029-7 [53] ZHANG L, LIU Y, LI S, et al. Additive manufacturing of titanium alloys by electron beam melting: a review[J]. Advanced Engineering Materials, 2018, 20(5): 1700842. doi: 10.1002/adem.201700842 [54] BAR-COHEN Y. Advances in manufacturing and processing of materials and structures[M]. CRC Press, 2018. [55] HIRT L, REISER A, SPOLENAK R, et al. Additive manufacturing of metal structures at the micrometer scale[J]. Advanced Materials, 2017, 29(17): 1604211. doi: 10.1002/adma.201604211 [56] GENG P, ZHAO J, WU W, et al. Effect of thermal processing and heat treatment condition on 3D printing PPS properties[J]. Polymers, 2018, 10: 875. doi: 10.3390/polym10080875 [57] MONKOVA K, ZETKOVA I, KUˇCEROVÁ L, et al. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel[J]. Archive Applied Mechanics, 2019, 89: 791-804. doi: 10.1007/s00419-018-1389-3 [58] TILLMANN W, SCHAAK C, NELLESEN J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 13: 93-102. doi: 10.1016/j.addma.2016.11.006 [59] KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. Journal of Materials Processing Technolnology, 2015, 220: 202-214. doi: 10.1016/j.jmatprotec.2015.01.025 [60] SHENG X, WANG A, WANG Z, et al. Advanced surface modification for 3D-printed titanium alloy implant interface functionalization[J]. Frontiers in Bioengineering and biotechnology, 2022, (10): article 850110. [61] KUNČICKÁ L, KOCICH R, LOWE T C. Advances in metals and alloys for joint replacement[J]. Progress in Materials Science, 2017, 88: 232-280. doi: 10.1016/j.pmatsci.2017.04.002 [62] TOBIN E J. Recent coating developments for combination devices in orthopedic and dental applications: A literature review[J]. Advanced Drug Delivery Reviews, 2017, 112: 88-100. doi: 10.1016/j.addr.2017.01.007 [63] KUMAR A, MISRA R D K. 3D-printed titanium alloys for orthopedic applications, in titanium in medical and dental applications[M]. Elsevier, 2018: 251-275. [64] SHENG X, WANG A, WANG Z, at al. Advanced surface modification for 3D-printed titanium alloy implant interface functionalization[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 850110. [65] KIM J H, et al. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications[J]. Dental Materials, 2020, 36(7): 945-958. doi: 10.1016/j.dental.2020.04.027 [66] LEE U L, KWON J S, WOO S H, et al. Simultaneous bimaxillary surgery and mandibular reconstruction with a 3-dimensional printed titanium implant fabricated by electron beam melting: a preliminary mechanical testing of the printed mandible[J]. Journal of Oral and Maxillofacial Surgery, 2016, 74(7): 1501. e1-1501. e15. [67] PARK E K, LIM J Y, YUN I S, et al. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects[J]. Journal of Craniofacial Surgery, 2016, 27(4): 943-949. doi: 10.1097/SCS.0000000000002656 [68] IMANISHI J, CHOONG P F M. Three-dimensional printed calcaneal prosthesis following total calcanectomy[J]. International Journal of Surgery Case Reports, 2015, 10: 83-87. doi: 10.1016/j.ijscr.2015.02.037 [69] ARANDA J L, JIMÉNEZ M F, RODRÍGUEZ M, et al. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction[J]. European Journal of Cardio-Thoracic Surgery, 2015, 48(4): e92-e94. doi: 10.1093/ejcts/ezv265 [70] MOBBS R J, COUGHLAN M, THOMPSON R, et al. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report[J]. J. Neurosurgery Spine, 2017, 26(4): 513-518. doi: 10.3171/2016.9.SPINE16371 [71] HATAMLEH M M, WU X, ALNAZZAWI A, et al, Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments[J]. Dental Materials, 2018, 34(4): 676-683. [72] CHAI Y C, KERCKHOFS G, ROBERTS S J, et al. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition[J]. Biomaterials, 2012, 33(16): 4044-4058. doi: 10.1016/j.biomaterials.2012.02.026 [73] CORDEIRO J M, BELINE T, RIBEIRO A L, et al. Development of binary and ternary titanium alloys for dental implants[J]. Dental Materials, 2017, 33(11): 1244-1257. doi: 10.1016/j.dental.2017.07.013 [74] OLIVEIRA T T, REIS A C. Fabrication of dental implants by the additive manufacturing method: A systematic review[J]. The Journal of Prosthetic Dentistry, 2019, 122(3): 270-274. doi: 10.1016/j.prosdent.2019.01.018 [75] TEDESCO J, LEE B, LIN A, et al. Osseointegration of a 3D printed stemmed titanium dental implant: A pilot study[J]. International Journal of Dentistry, 2017, 5920714. [76] FUKUDA A, TAKEMOTO M, SAITO T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomater, 2011, 7(5): 2327-2336. doi: 10.1016/j.actbio.2011.01.037 [77] HAN C J, LI Y, WANG Q, et al. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2018, 80: 119-127. doi: 10.1016/j.jmbbm.2018.01.013 [78] HOLLANDER D A, WALTER M V, WIRTZ T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming[J]. Biomaterials, 2006, 27(7): 955-963. doi: 10.1016/j.biomaterials.2005.07.041 [79] JANG T-S, KIM D, HAN G, et al. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review[J]. Biomedical Engineering Letters, 2020, 10: 505-516. doi: 10.1007/s13534-020-00177-2 [80] FROES F H. Titanium for medical and dental application-An introduction, in titanium in medical and dental applications[M]. Elsevier, 2018:3-21. [81] GUILLERMO P, BELÉN M, FRANCISCO M, et al. Current applications of 3D printing in dental implantology: A scoping review mapping the evidence[J]. Clinical Oral Implants Research, 2024, 35: 1011-1032. doi: 10.1111/clr.14198 [82] DAWOOD A, MARTI B, SAURET-JACKSON V. 3D printing in dentistry[J]. British Dental Journal, 2015, 219: 521-529. doi: 10.1038/sj.bdj.2015.914 [83] GORDON D S, BLAIR G A. Titanium cranioplasty[J]. British Medical Journal, 1974, 2: 478-481. doi: 10.1136/bmj.2.5917.478 [84] CABRAJA M, KLEIN M, LEHMANN T N. Long-term results following titanium cranioplasty of large skull defects[J]. Neurosurgical Focus, 2009, 26: E10. [85] BONDA D J, MANJILA S, SELMAN W R, et al. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions[J]. Neurosurgery, 2015, 77: 814-824. doi: 10.1227/NEU.0000000000000899 [86] DURHAM S R, MCCOMB J G, LEVY M L. Correction of large (> 25 cm2) cranial defects with “reinforced” hydroxyapatite cement: technique and complications[J]. Neurosurgery, 2003, 52(4): 842-845. doi: 10.1227/01.NEU.0000054220.01290.8E [87] GUEUTIER A, KÜN-DARBOIS J D, LACCOURREYE L, et al. Anatomical and functional rehabilitation after total bilateral maxillectomy using a custom-made bone-anchored titanium prosthesis[J]. International Journal Oral Maxillofacial Surgery, 2020, 49(3): 392-396. doi: 10.1016/j.ijom.2019.08.014 [88] LI Z M, ZHANG X B, LIU W, et al. Applicative assessment of a selective laser melting 3D-printed Ti-6Al-4V plate with a honeycomb structure in the reconstruction of a mandibular defect of a beagle dog[J]. ACS Biomaterials Science & Engineering, 2023, 9(11): 6472-6480. [89] SHARMA N, OSTAS D, ROTAR H, et al. Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram[J]. Frontiers in Physiology, 2021, 12: 647923. doi: 10.3389/fphys.2021.647923 [90] LEE U L, YUN S, LEE H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications[J]. Dental Materials, 2022, 38(10): 1648-1660. doi: 10.1016/j.dental.2022.08.003 [91] CHEN C, HUANG B, LIU Y, et al. Functional engineering strategies of 3D printed implants for hard tissue replacement[J]. Regenerative Biomaterials, 2023, 10: rbac094. doi: 10.1093/rb/rbac094 [92] MAJOR R, KOWALCZYK P, SURMIAK M, et al. Patient specific implants for jawbone reconstruction after tumor resection[J]. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111056. doi: 10.1016/j.colsurfb.2020.111056 [93] PARTHASARATHY J, STARLY B, RAMAN S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of Mechanical Behavior of Biomedical Materials, 2010, 3(3): 249-259. doi: 10.1016/j.jmbbm.2009.10.006 [94] DENG Z, ZOU Q, WANG L, et al. Comparison between three-dimensional printed titanium and PEEK cages for cervical and lumbar interbody fusion: A prospective controlled trial[J]. Orthopaedic. Surgery, 2023, 15: 2889-2900. doi: 10.1111/os.13896 [95] DUAN Y, FENG D, LI T, et al. Comparison of lumbar interbody fusion with 3D-printed porous titanium cage versus polyetheretherketone cage in treating lumbar degenerative disease: A Systematic review and meta-analysis[J]. World Neurosurgery, 2024, 183: 144-156. doi: 10.1016/j.wneu.2023.12.111 [96] LEWANDROWSKI K U, VIRA S, ELFAR J C, et al. Advancements in custom 3D-printed titanium interbody spinal fusion cages and their relevance in personalized spine care[J]. Journal of Personalized Medicine, 2024, 14(8): 809. [97] MACDONALD E, WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science, 2016, 353(6307): aaf2093. doi: 10.1126/science.aaf2093 [98] JING Z, ZHANG T, XIU P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review[J]. Biomedical Materials, 2020, 15: 052003. doi: 10.1088/1748-605X/ab9078 [99] SONG P, HU C, PEI X, et al. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration[J]. Jouirnal of MaterialsChemistry B, 2019, 7: 2865-2877. [100] WALLACE N, SCHAFFER N E, ALEEM I S, et al. 3D-printed patient-specific spine implants: A systematic review[J]. Clinical Spine Surgery, 2020, 33: 400-407. doi: 10.1097/BSD.0000000000001026 [101] AMALRAJU D, DAWOOD A. Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture[J]. Engineering Science and Technology: An International Journal, 2012, 2: 381-388. [102] HE S, ZHU J, JING Y, et al. Effect of 3D-printed porous titanium alloy pore structure on bone regeneration: A review[J]. Coatings, 2024, 14: 253. doi: 10.3390/coatings14030253 [103] KELLY C N, WANG T, CROWLEY J, et al. High-strength, porous additively manufactured implants with optimized mechanical osseointegration[J]. Biomaterials, 2021, 279: 121206. doi: 10.1016/j.biomaterials.2021.121206 [104] HOLMES B, BULUSU K, PLESNIAK M, et al. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair[J]. Nanotechnology, 2016, 27: 064001. doi: 10.1088/0957-4484/27/6/064001 [105] WANG Z, MITHIEUX S M, WEISS A S. Fabrication techniques for vascular and vascularized tissue engineering[J]. Advanced Healthcare Materials, 2019, 8(19): 1900742. doi: 10.1002/adhm.201900742 [106] LEWANDROWSKI K U, VIRA S, ELFAR J C, et al. Advancements in custom 3D-printed titanium interbody spinal fusion cages and their relevance in personalized spine care[J]. Journal Personalized Medicine, 2024, 14: 809. doi: 10.3390/jpm14080809 [107] XU N, WEI F, LIU X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma[J]. Spine, 2016, 41: E50-E54. doi: 10.1097/BRS.0000000000001179 [108] LI X, WANG Y, ZHAO Y, et al. Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma[J]. Spine, 2017, 42: E1326-E1330. doi: 10.1097/BRS.0000000000002229 [109] KIM D, LIM J Y, SHIM K W, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result[J]. Yonsei Medical Journal, 2017, 58: 453-457. doi: 10.3349/ymj.2017.58.2.453 [110] CHOY W J, MOBBS R J, WILCOX B, et al. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor[J]. World Neurosurgery. 2017, 105: 1032. e13–1032. e17. [111] PUCCI J U, CHRISTOPHE B R, SISTI J A, et al. Three-dimensional printing: Technologies, applications, and limitations in neurosurgery[J]. Biotechnology Advances, 2017, 35: 521-529. doi: 10.1016/j.biotechadv.2017.05.007 [112] ILIOPOULOS E, MAKIEV K, GEORGOULAS P, et al. The use of 3D printing technology in limb reconstruction. Inspirations and challenges[J]. Trauma Case Reports, 2023, 46: 100848. doi: 10.1016/j.tcr.2023.100848 [113] HSU A R, ELLINGTON J K. Patient-specific 3-dimensional printed titanium truss cage with tibiotalocalcaneal arthrodesis for salvage of persistent distal tibia nonunion[J]. Foot Ankle Specialist, 2015, 8(6): 483-489. doi: 10.1177/1938640015593079 [114] DEKKER T J, STEELE J R, FEDERER A E, et al. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures[J]. Foot Ankle International, 2018, 39(8): 916-921. doi: 10.1177/1071100718770133 [115] ABAR B, KWON N, ALLEN N B, et al. Outcomes of surgical reconstruction using custom 3D-printed porous titanium implants for critical-sized bone defects of the foot and ankle[J]. Foot Ankle International, 2022, 43(6): 750-761. doi: 10.1177/10711007221077113 [116] AKHTAR M A, LOW C, TIEMESSEN C, et al. Current challenges and future prospects of osseointegration limb reconstruction for amputees[J]. SN Comprehensive Clinical Medicine, 2023, 6(1): 4. doi: 10.1007/s42399-023-01629-3 [117] GU Y, SUN Y, SHUJAAT S, et al. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review[J]. Journal of Orthopaedic Surgery and Research, 2022, 17(1): 68. doi: 10.1186/s13018-022-02960-6 [118] FAN S, TALHA M, YU X, et al. 3D printing of porous Ti6Al4V bone tissue engineering scaffold and surface anodization preparation of nanotubes to enhance its biological property[J]. Nanotechnology Reviews, 2023, 12(1): 20230572. doi: 10.1515/ntrev-2023-0572 [119] ZHZO B J, WANG H, YAN R Z, et al. Properties evaluation of a Ti-6Al-4V alloy scaffold fabricated by electron beam melting and selective laser melting for bone tissue engineering[J]. Journal of Biomaterials and Tissue Engineering, 2016, 6(10): 832-842. doi: 10.1166/jbt.2016.1511 [120] YAN R, LUO D, HUANG H, et al. Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold[J]. Scientific Reports, 2018, 8(1): 750. doi: 10.1038/s41598-017-15564-6 [121] FAN S, LI S, WU Y, et al. Customized 3D‐printed heterogeneous porous titanium scaffolds for bone tissue engineering[J]. MedComm–Biomaterials and Applications, 2024, 3(2): e80. [122] ZHAO L, PEI X, JIANG L, et al. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair[J]. Composites Part B: Engineering, 2019, 162: 154-161. doi: 10.1016/j.compositesb.2018.10.094 [123] LIU X, DENG F, ZHANG M, et al. 3D-printed ellipsoid bionic porous titanium alloy scaffold for promotion of osseointegration[J]. International Journal of Bioprinting, 2025, 11(2): 510-529. [124] WU Y, LIU J, KANG L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives[J]. Heliyon, 2023, 9(7): e17718. doi: 10.1016/j.heliyon.2023.e17718 [125] LEE J A, KOH Y G, KANG K T. Biomechanical and clinical effect of patient-specific or customized knee implants: a review[J]. Journal Clinical Medicine, 2020, 9(5): 1559. doi: 10.3390/jcm9051559 [126] MITRA I, BOSE S, DERNELL W, et al. 3D Printing in alloy design to improve biocompatibility in metallic implants[J], Materials today, 2021, 45: 20-34. [127] AL-TAMIMI A A, ALMEIDA H, BARTOLO P. Structural optimisation for medical implants through additive manufacturing[J]. Progress in Additive Manufacturing, 2020, 5(2): 95-110. doi: 10.1007/s40964-020-00109-7 [128] ROUT P K, RATHORE D K, ROY S. Study on Mg-based biodegradable orthopaedic implants and their corrosion behaviour: A Review[J]. Advances in Mechanical and Industrial Engineering, 2022: 277-287. [129] TAN X, TAN Y, CHOW C, et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility[J]. Materials Science and Engineering: C, 2017, 76: 1328-1343. doi: 10.1016/j.msec.2017.02.094 [130] FROST B A, CAMARERO-ESPINOSA S, FOSTER E J. Materials for the spine: anatomy, problems, and solutions[J]. Materials, 2019, 12(2): 253. doi: 10.3390/ma12020253 [131] CHEN S, HO S, CHANG C, et al. Influence of roughness on in-vivo properties of titanium implant surface and their electrochemical behavior[J]. Surface and Coatings Technology, 2016, 302: 215-226. doi: 10.1016/j.surfcoat.2016.06.007 [132] KHODAEI M, VALANEZHAD A, I. WATANABE I, et al. Surface and mechanical properties of modified porous titanium scaffold[J]. Surface and Coatings Technology, 2017, 315: 61-66. doi: 10.1016/j.surfcoat.2017.02.032 [133] LI C, LI W. Deposition characteristics of titanium coating in cold spraying[J]. Surface and Coatings Technology, 2003, 167(2-3): 278-283. doi: 10.1016/S0257-8972(02)00919-2 -
下载: