Absorption behavior of TiO2 inclusions by different high titanium steel mold slags
-
摘要: 为了提高高钛钢连铸过程中保护渣吸收夹杂物的速率,设计了五种潜在的高钛钢保护渣,将原位观察试验和旋转圆柱法相结合,分别观察和定量分析了各保护渣对TiO2夹杂物的吸收行为及吸收速率的差异,采用扫描电镜-能谱仪(SEM-EDS)对TiO2试样与保护渣接触的界面进行分析,以确定TiO2在保护渣中的溶解机理。结果表明,TiO2在CaO-SiO2-BaO渣中溶解速率最快,其次为低碱度CaO-SiO2渣,两种渣在原位试验中耗时较短,且完全溶解,在旋转圆柱试验中溶解速率分别为0.285 、0.281 mm/min。TiO2在高碱度CaO-SiO2、CaO-SiO2-Al2O3和CaO-SiO2-Al2O3-BaO渣系中溶解速率较慢,仅CSAB渣完全溶解,旋转圆柱试验中溶解速率分别为0.151、0.101 mm/min和0.191 mm/min。阻碍TiO2溶解的主要原因是溶解的TiO2与渣中CaO反应生成的高熔点CaTiO3使得保护渣局部粘度和熔点上升。Abstract: To enhance the inclusion absorption rate of mold slags during continuous casting of high-titanium steel, five candidate high-Ti steel slags were designed. The absorption behaviors and absorption rate differences of TiO2 inclusions by each slag were investigated through a combination of in-situ observation tests and rotating cylinder method with quantitative analysis. SEM-EDS was employed to analyze the interface between TiO2 samples and slags, elucidating the dissolution mechanism of TiO2 in the slag. Results demonstrate that TiO2 dissolution rate was fastest in the CaO-SiO2-BaO slag, followed by the low-basicity CaO-SiO2 slag. Both achieved complete dissolution with shorter durations during the in-situ tests, exhibiting dissolution rates of 0.285 mm/min and 0.281 mm/min respectively in the rotating cylinder tests. Comparatively, TiO2 dissolution rates decreased significantly in the high-basicity CaO-SiO2, CaO-SiO2-Al2O3, and CaO-SiO2-Al2O3-BaO systems, with only the CSAB slag completely dissolving (0.151, 0.101 mm/min, and 0.191 mm/min respectively). The primary inhibition mechanism was identified as the formation of high-melting-point CaTiO3 through reaction between dissolved TiO2 and CaO in the slag, which elevated local viscosity and melting point of the slags.
-
表 1 设计的保护渣的化学组分
Table 1. Designed chemical compositions of mold slags
No. SiO2 CaO MgO Al2O3 Na2O CaF2 BaO LCS 43 26 3 6 8 10 4 HCS 32 37 3 6 8 10 4 CSB 32 21 3 6 8 10 20 CSA 18 37 3 20 8 10 4 CSAB 18 21 3 20 8 10 20 表 2 TiO2在不同保护渣中溶解所用的时间
Table 2. The dissolution time of TiO2 in different slags
No. Dissolution time/s Completely dissolved LCS 100 Yes HCS 390 No CSB 116 Yes CSA 391 No CSAB 400 No -
[1] SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. (单麟天. 钛在钢中的作用[J]. 钢铁钒钛, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014SHAN L T. The role of titanium in steel[J]. Iron Steel Vanadium Titanium, 1981(2): 85-91. doi: 10.7513/j.issn.1004-7638.1981.02.014 [2] YIN X, SUN Y H, YANG Y D, et al. Formation of inclusions in Ti-stabilized 17Cr austenitic stainless steel[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2016, 47(6): 3274-3284. doi: 10.1007/s11663-016-0681-2 [3] ZHANG L P, DAVIS C L, STRANGWOOD M. Dependency of fracture toughness on the inhomogeneity of coarse TIN particle distribution in a low alloy steel[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2001, 32(5): 1147-1155. doi: 10.1007/s11661-001-0125-7 [4] MICHELIC S K, BERNHARD C. Experimental study on the behavior of TiN and Ti2O3 inclusions in contact with CaO-Al2O3-SiO2-MgO slags[J]. Scanning, 2017, 2017: 1-14. [5] HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15. (郝占全, 陈伟庆, LIPPOLD C, 等. 结晶器保护渣吸收TiO2夹杂物的动力学研究[J]. 特殊钢, 2009, 30(5): 13-15.HAO Z Q, CHEN, W Q, LIPPOLD C, et al. Kinetics study on the absorption of TiO2 inclusions by mold flux[J]. Special Steel, 2009, 30(5): 13-15. [6] LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46. (李博洋, 耿鑫, 姜周华, 等. 保护渣对铝钛系夹杂物溶解的吸收规律[J]. 连铸, 2020, 231(5): 42-46.LI B Y, GENG X, JIANG Z H, et al. Absorption behavior of mold flux on the dissolution of aluminum-titanium inclusions[J]. Continuous Casting, 2020, 231(5): 42-46. [7] ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64. (周乐君, 杨洋, 王万林, 等. 氧化硼对保护渣中TiO2溶解动力学的影响[J]. 连铸, 2021, (6): 54-8, 64.ZHOU L J, YANG Y, WANG W L, et al. Effect of boron oxide on the dissolution kinetics of TiO2 in mold flux[J]. Continuous Casting, 2021, (6): 54-58, 64. [8] CHOI J Y, LEE H G, KIM J S. Dissolution rate of Al2O3 into molten CaO-SiO2-Al2O3 slags[J]. ISIJ INTERNATIONAL, 2002, 42(8): 852-860. doi: 10.2355/isijinternational.42.852 [9] CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019. (陈卓. 高钛合金钢连铸保护渣基础研究及应用[D]. 重庆: 重庆大学, 2019.CHEN Z. Fundamental research and application of mold flux for continuous casting of high-titanium alloy steel[D]. Chongqing: Chongqing University, 2019. [10] ZHANG Z T, LI J, LIU P. Crystallization behavior in fluoride-free mold fluxes containing TiO2/ZrO2[J]. Journal of Iron and Steel Research International, 2011, 18(5): 31-37. doi: 10.1016/S1006-706X(11)60061-7 -
下载: