Research on solidification heat transfer and reduction position of grade E355 slab
-
摘要: 为改善E355板坯连铸坯质量,通过数值模拟的方法,对现有生产状况进行了分析,分别研究了拉速、比水量和过热度对铸坯凝固过程和压下位置的影响。根据模拟结果,得到理论上该钢种更优的生产条件:拉速为1.1 m/min,比水量为0.66 L/kg,过热度为10 ℃,轻压下位置为距弯月面17.8~21.1 m,根据生产数据,压下位置应在seg.7~9。Abstract: In order to improve the quality of grade E355 slab, based on the existing process conditions numerical simulation, had been conducted to investigate the influences of casting speed, water ratio and superheat on the solidification process of the slab and the position of the soft reduction. Based on the simulation results, theoretically optimal production conditions for this steel grade have been obtained as follows: casting speed is 1.1 m/min, water ratio is 0.66 L/kg, superheat is 10℃, the area of soft reduction is located at a distance of 17.8 m to 21.1 m from the concave surface. According to production data, the soft reduction position should be in segment 7-9.
-
Key words:
- E355 steel /
- nail shooting experiment /
- numerical simulation /
- soft reduction
-
表 1 E355钢的化学成分
Table 1. The chemical composition of E355 steel
% C S Mn P else 0.17~0.20 0.002~0.003 1.28~1.30 0.008~0.009 表 2 结晶器参数
Table 2. The technical parameters of mould
Effective height
/mmWater flow of
wide face/
(L$ \cdot $min−1)Water flow of
narrow face/
(L$ \cdot $min−1)Temperature difference
for outlet and inlet
/℃800 3100 550 5 表 3 二冷区参数
Table 3. The technical parameters of secondary cooling zone
Secondary
cooling zoneDistance from
meniscus /
mmCooling water flow rate/(L$ \cdot $min−1) Cast speed
1.0 m/minCast speed
1.1 m/minCast speed
1.2 m/minInner arc Outer arc Inner arc Outer arc Inner arc Outer arc ZoneⅠ 1063 172 191 211 Flank of zone Ⅰ 67 74 82 Zone Ⅱ 1783 266 296 324 Zone Ⅲ 2865 252 282 310 Zone Ⅳ 4434 224 252 280 Zone Ⅴ 6636 89 97 102 111 115 125 Zone Ⅵ 10149 96 115 114 136 132 157 Zone Ⅶ 16343 58 78 76 102 94 126 Zone Ⅷ 20699 9 13 9 13 26 36 According to the production situation, the cooling specific water amount is 0.52, 0.55, 0.57 L/kg respectively. 表 4 射钉试验钢钉成分
Table 4. Chemical composition of nail shooting steel
% Brand Element content C Si Mn Cr else 60Si2MnA 0.56~0.64 1.60~2.00 0.60~0.90 ≤0.35 表 5 射钉试验生产参数
Table 5. Process conditions of nail shooting experiment
Grade Cast
speed/
(m$ \cdot $min−1)Superheat/
℃Water flow of
meniscus
wide face/
(L$ \cdot $min−1)Water flow of
meniscus
narrow face/
(L$ \cdot $min−1)Specific water
amount /
(L$ \cdot $kg−1)E355 1.0 15 3100 550 0.519 1.1 0.546 1.2 0.574 表 6 射钉试验初始数据
Table 6. The initial nail shooting experiment results
Nail-shooting sequence number Cast speed/
(m$ \cdot $min−1)Nail-shooting
position /mShell thickness /mm Solidification coefficient /
( mm·min1/2)Solidification end
point/m1-1 1.0 16.6 90 24.90 21.32 1-2 1.1 18.7 94 25.15 22.99 1-3 1.2 20.88 96 25.18 25.01 -
[1] WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. (卫广运, 张瑞忠, 郭子强, 等. 连铸坯压下技术发展与应用[J]. 河北冶金, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406 [2] CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33. (蔡开科, 孙彦辉, 倪有金. 连铸坯凝固结构的形成与控制[C]. 第五期连铸电磁搅拌技术学习研讨班, 中国福建厦门, 2008: 33.CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33. [3] LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. (刘添, 李曜光, 孙彦辉, 等. 82B小方坯凝固组织和偏析预测模型开发及应用[J]. 连铸, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130 [4] ZHENG X Y, SUN Y H, FENG Z H, et al. Numerical simulation of the effect of transverse non-uniform cooling on solidification end shape and centerline segregation in ultra-thick slabs[J]. Metallurgical and Materials Transactions B, 2025. [5] ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. (郑鑫钰, 孙彦辉, 丰琦, 等. Q345R厚板坯连铸凝固过程数值模拟[J]. 钢铁钒钛, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018 [6] WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. (王璐, 孙彦辉, 牛阿朋, 等. X80板坯传热凝固数值模拟[J]. 钢铁钒钛, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023 [7] LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022. (李曜光. 连铸过程宏观传输现象及中心偏析的模拟研究[D]. 北京: 北京科技大学, 2022.LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022. [8] FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. (丰琦, 郑鑫钰, 杨建, 等. 42CrMoA钢凝固组织数值模拟[J]. 连铸, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059 [9] GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140. (高擎, 杨文志, 杨建, 等. 50CrV连铸大方坯凝固末端电磁搅拌位置优化[J]. 钢铁钒钛, 2025, 46(1): 133-140.GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140. [10] GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025. (耿豪. 低合金钢板坯与轧材均质化控制研究[D]. 北京: 北京科技大学, 2025.GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025. [11] LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. (李红光, 徐明丽, 冯元超, 等. 重轨钢连铸大方坯V型偏析形成分析[J]. 钢铁钒钛, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027 [12] GUAN R, JI C, ZHU M Y. Modeling the effect of combined electromagnetic stirring modes on macrosegregation in continuous casting blooms[J]. Metallurgical and Materials Transactions B, 2020, 51(3): 1137-1153. doi: 10.1007/s11663-020-01827-7 [13] FENG Y, THOMAS B G, SENGUPTA J, et al. Multi-scale and multi-physics simulation of central segregation in an equiaxed dendritic mushy zone during continuous casting of steel[J]. Materialia, 2024, 33: 102003. doi: 10.1016/j.mtla.2023.102003 [14] ZHONG H G, WANG R J, HAN Q Y, et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 2022, 20: 3408-3419. doi: 10.1016/j.jmrt.2022.08.115 [15] FENG Z, ZHANG G, LI P, et al. Numerical simulation of fluid flow, solidification, and solute distribution in billets under combined mold and final electromagnetic stirring[J]. Materials, 2024, 17(2): 530. doi: 10.3390/ma17020530 [16] LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. (鲁素玲, 李江南, 郭志红, 等. GCr15轴承钢方坯连铸凝固组织数值模拟研究[J]. 特种铸造及有色合金, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500 [17] MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008. (马玉堂. 大方坯连铸机动态轻压下过程控制系统开发与应用[D]. 沈阳: 东北大学, 2008.MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008. [18] AN H H, BAO Y P, WANG M, et al. Numerical and experimental investigation of solidification structure evolution and reduction of centre segregation in continuously cast GCr15 bloom[J]. Ironmaking & Steelmaking, 2020, 47(9): 1063-1077. [19] LI Y G, CHEN W Q, SUN Y H. Analysis of macrosegregation during slab continuous casting using 3D-longitudinal 2D hybrid model[J]. Ironmaking & Steelmaking, 2023, 50(7): 794-808. [20] JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8. (祭程, 关锐, 朱苗勇, 等. 重轨钢凝固末端机械压下对溶质偏析行为的影响[C]. 第十二届中国钢铁年会, 中国北京, 2019: 8.JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8. -
下载: