中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

E355板坯凝固传热及压下位置研究

王添乐 郭明辉 郑鑫钰 丰琦 谢鑫 关建超 孙彦辉

王添乐, 郭明辉, 郑鑫钰, 丰琦, 谢鑫, 关建超, 孙彦辉. E355板坯凝固传热及压下位置研究[J]. 钢铁钒钛, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015
引用本文: 王添乐, 郭明辉, 郑鑫钰, 丰琦, 谢鑫, 关建超, 孙彦辉. E355板坯凝固传热及压下位置研究[J]. 钢铁钒钛, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015
WANG Tianle, GUO Minghui, ZHENG Xinyu, FENG Qi, XIE Xin, GUAN Jianchao, SUN Yanhui. Research on solidification heat transfer and reduction position of grade E355 slab[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015
Citation: WANG Tianle, GUO Minghui, ZHENG Xinyu, FENG Qi, XIE Xin, GUAN Jianchao, SUN Yanhui. Research on solidification heat transfer and reduction position of grade E355 slab[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 124-130. doi: 10.7513/j.issn.1004-7638.2025.06.015

E355板坯凝固传热及压下位置研究

doi: 10.7513/j.issn.1004-7638.2025.06.015
基金项目: 中央高校基本科研业务资助项目(06930007)。
详细信息
    作者简介:

    王添乐,2001年出生,男,黑龙江青冈人,硕士研究生,主要研究方向:连铸坯质量控制,E-mail:996999782@qq.com

    通讯作者:

    孙彦辉,1971年出生,男,黑龙江青冈人,博士,教授,主要从事品种钢开发及连铸工艺关键技术研究,E-mail:ustb420@126.com

  • 中图分类号: TF044

Research on solidification heat transfer and reduction position of grade E355 slab

  • 摘要: 为改善E355板坯连铸坯质量,通过数值模拟的方法,对现有生产状况进行了分析,分别研究了拉速、比水量和过热度对铸坯凝固过程和压下位置的影响。根据模拟结果,得到理论上该钢种更优的生产条件:拉速为1.1 m/min,比水量为0.66 L/kg,过热度为10 ℃,轻压下位置为距弯月面17.8~21.1 m,根据生产数据,压下位置应在seg.7~9。
  • 图  1  E355钢物性参数

    Figure  1.  Thermal properties of E355 steel

    图  2  射钉试验示意

    Figure  2.  Diagram of nail shooting experiment

    图  3  射钉试验与模拟结果对比

    Figure  3.  Comparison of nail shooting experiment and simulation results

    图  4  E355板坯的酸洗相片

    (a)1-1号试样(拉速1.0 m/min); (b)1-2号试样(拉速1.1 m/min); (c)1-3号试样(拉速1.2 m/min)

    Figure  4.  The results of nail shooting experiment of the E355 slab

    图  5  不同拉速下的温度场变化

    Figure  5.  Effect of the different casting speed on the temperature field of slab

    图  7  不同比水量下的温度场变化

    Figure  7.  Effect of the different cooling specific water on the temperature field of slab

    图  9  不同过热度下的温度场变化

    Figure  9.  Effect of the different superheat on the temperature field of slab

    图  6  不同拉速下的中心固相率曲线

    Figure  6.  Effect of casting speed on the center fraction of slab

    图  8  不同比水量下的中心固相率曲线

    Figure  8.  Effect of the different cooling specific water on the center fraction of slab

    图  10  不同过热度下的中心固相率变化

    Figure  10.  Effect of the different superheat on the center fraction of slab

    表  1  E355钢的化学成分

    Table  1.   The chemical composition of E355 steel %

    CSMnPelse
    0.17~0.200.002~0.0031.28~1.300.008~0.009
    下载: 导出CSV

    表  2  结晶器参数

    Table  2.   The technical parameters of mould

    Effective height
    /mm
    Water flow of
    wide face/
    (L$ \cdot $min−1
    Water flow of
    narrow face/
    (L$ \cdot $min−1
    Temperature difference
    for outlet and inlet
    /℃
    800 3100 550 5
    下载: 导出CSV

    表  3  二冷区参数

    Table  3.   The technical parameters of secondary cooling zone

    Secondary
    cooling zone
    Distance from
    meniscus /
    mm
    Cooling water flow rate/(L$ \cdot $min−1
    Cast speed
    1.0 m/min
    Cast speed
    1.1 m/min
    Cast speed
    1.2 m/min
    Inner arc
    Outer arc Inner arc
    Outer arc Inner arc
    Outer arc
    ZoneⅠ 1063 172 191 211
    Flank of zone Ⅰ 67 74 82
    Zone Ⅱ 1783 266 296 324
    Zone Ⅲ 2865 252 282 310
    Zone Ⅳ 4434 224 252 280
    Zone Ⅴ 6636 89 97 102 111 115 125
    Zone Ⅵ 10149 96 115 114 136 132 157
    Zone Ⅶ 16343 58 78 76 102 94 126
    Zone Ⅷ 20699 9 13 9 13 26 36
    According to the production situation, the cooling specific water amount is 0.52, 0.55, 0.57 L/kg respectively.
    下载: 导出CSV

    表  4  射钉试验钢钉成分

    Table  4.   Chemical composition of nail shooting steel %

    Brand
    Element content
    C Si Mn Cr else
    60Si2MnA 0.56~0.64 1.60~2.00 0.60~0.90 ≤0.35
    下载: 导出CSV

    表  5  射钉试验生产参数

    Table  5.   Process conditions of nail shooting experiment

    Grade Cast
    speed/
    (m$ \cdot $min−1
    Superheat/
    Water flow of
    meniscus
    wide face/
    (L$ \cdot $min−1)
    Water flow of
    meniscus
    narrow face/
    (L$ \cdot $min−1)
    Specific water
    amount /
    (L$ \cdot $kg−1)
    E355 1.0 15 3100 550 0.519
    1.1 0.546
    1.2 0.574
    下载: 导出CSV

    表  6  射钉试验初始数据

    Table  6.   The initial nail shooting experiment results

    Nail-shooting sequence number Cast speed/
    (m$ \cdot $min−1
    Nail-shooting
    position /m
    Shell thickness /mm Solidification coefficient /
    ( mm·min1/2)
    Solidification end
    point/m
    1-1 1.0 16.6 90 24.90 21.32
    1-2 1.1 18.7 94 25.15 22.99
    1-3 1.2 20.88 96 25.18 25.01
    下载: 导出CSV
  • [1] WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. (卫广运, 张瑞忠, 郭子强, 等. 连铸坯压下技术发展与应用[J]. 河北冶金, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406

    WEI G Y, ZHANG R Z, GUO Z Q, et al. Development and application of reduction technology for continuous casting billet[J]. Hebei Metallurgy, 2019(4): 25-29. doi: 10.13630/j.cnki.13-1172.2019.0406
    [2] CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33. (蔡开科, 孙彦辉, 倪有金. 连铸坯凝固结构的形成与控制[C]. 第五期连铸电磁搅拌技术学习研讨班, 中国福建厦门, 2008: 33.

    CAI K K, SUN Y H, NI Y J. The formation and control of the solidification structure of continuous casting billets[C]. The Fifth Learning and Discussion Workshop on Electromagnetic Stirring Technology for Continuous Casting, Xiamen, Fujian, China, 2008: 33.
    [3] LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. (刘添, 李曜光, 孙彦辉, 等. 82B小方坯凝固组织和偏析预测模型开发及应用[J]. 连铸, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130

    LIU T, LI Y G, SUN Y H, et al. Development and application of prediction model for solidification structure and segregation of 82B billet[J]. Continuous Casting, 2022(6): 8-15. doi: 10.13228/j.boyuan.issn1005-4006.20220130
    [4] ZHENG X Y, SUN Y H, FENG Z H, et al. Numerical simulation of the effect of transverse non-uniform cooling on solidification end shape and centerline segregation in ultra-thick slabs[J]. Metallurgical and Materials Transactions B, 2025.
    [5] ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. (郑鑫钰, 孙彦辉, 丰琦, 等. Q345R厚板坯连铸凝固过程数值模拟[J]. 钢铁钒钛, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018

    ZHENG X Y, SUN Y H, FENG Q, et al. Numerical simulation of solidification process for Q345R thick slab continuous casting[J]. Iron Steel Vanadium Titanium, 2024, 45(5): 139-146. doi: 10.7513/j.issn.1004-7638.2024.05.018
    [6] WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. (王璐, 孙彦辉, 牛阿朋, 等. X80板坯传热凝固数值模拟[J]. 钢铁钒钛, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023

    WANG L, SUN Y H, NIU A P, et al. Numerical simulation of heat transfer and solidification in X80 Slab[J]. Iron Steel Vanadium Titanium, 2018, 39(6): 143-149. doi: 10.7513/j.issn.1004-7638.2018.06.023
    [7] LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022. (李曜光. 连铸过程宏观传输现象及中心偏析的模拟研究[D]. 北京: 北京科技大学, 2022.

    LI Y G Numerical study on macroscopic transport phenomena and center segregation for continuous casting process[D]. Beijing: University of Science and Technology Beijing, 2022.
    [8] FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. (丰琦, 郑鑫钰, 杨建, 等. 42CrMoA钢凝固组织数值模拟[J]. 连铸, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059

    FENG Q, ZHENG X Y, YANG J, et al. Solidification numerical simulation of 42CrMoA billet[J]. Continuous Casting, 2024(6): 45-51. doi: 10.13228/j.boyuan.issn1005-4006.20240059
    [9] GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140. (高擎, 杨文志, 杨建, 等. 50CrV连铸大方坯凝固末端电磁搅拌位置优化[J]. 钢铁钒钛, 2025, 46(1): 133-140.

    GAO Q , YANG W Z, YANG J, et al. Optimization of the electromagnetic stirring position at solidification end of 50CrV continuous casting Billet[J]. Iron Steel Vanadium Titanium, 2025, 46(1): 133-140.
    [10] GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025. (耿豪. 低合金钢板坯与轧材均质化控制研究[D]. 北京: 北京科技大学, 2025.

    GENG H. Research on homogenization control of low alloy steel slabs and rolled products[D]. Beijing: University of Science and Technology Beijing, 2025.
    [11] LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. (李红光, 徐明丽, 冯元超, 等. 重轨钢连铸大方坯V型偏析形成分析[J]. 钢铁钒钛, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027

    LI H G, XU M L, FENG Y C, et al. Analysis on the formation of V-shape segregation in rail steel bloom[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 180-187. doi: 10.7513/j.issn.1004-7638.2023.05.027
    [12] GUAN R, JI C, ZHU M Y. Modeling the effect of combined electromagnetic stirring modes on macrosegregation in continuous casting blooms[J]. Metallurgical and Materials Transactions B, 2020, 51(3): 1137-1153. doi: 10.1007/s11663-020-01827-7
    [13] FENG Y, THOMAS B G, SENGUPTA J, et al. Multi-scale and multi-physics simulation of central segregation in an equiaxed dendritic mushy zone during continuous casting of steel[J]. Materialia, 2024, 33: 102003. doi: 10.1016/j.mtla.2023.102003
    [14] ZHONG H G, WANG R J, HAN Q Y, et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 2022, 20: 3408-3419. doi: 10.1016/j.jmrt.2022.08.115
    [15] FENG Z, ZHANG G, LI P, et al. Numerical simulation of fluid flow, solidification, and solute distribution in billets under combined mold and final electromagnetic stirring[J]. Materials, 2024, 17(2): 530. doi: 10.3390/ma17020530
    [16] LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. (鲁素玲, 李江南, 郭志红, 等. GCr15轴承钢方坯连铸凝固组织数值模拟研究[J]. 特种铸造及有色合金, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500

    LU S L, LI J N, GUO Z H, et al. Numerical simulation on solidification structure of GCr15 bearing steel billet during continuous casting[J]. Special Casting & Nonferrous Alloys, 2025, 45(2): 208-214. doi: 10.15980/j.tzzz.T20230500
    [17] MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008. (马玉堂. 大方坯连铸机动态轻压下过程控制系统开发与应用[D]. 沈阳: 东北大学, 2008.

    MA Y T. Development and application of dynamic soft reduction process control system for bloom continuous casting machine[D]. Shenyang: Northeastern University, 2008.
    [18] AN H H, BAO Y P, WANG M, et al. Numerical and experimental investigation of solidification structure evolution and reduction of centre segregation in continuously cast GCr15 bloom[J]. Ironmaking & Steelmaking, 2020, 47(9): 1063-1077.
    [19] LI Y G, CHEN W Q, SUN Y H. Analysis of macrosegregation during slab continuous casting using 3D-longitudinal 2D hybrid model[J]. Ironmaking & Steelmaking, 2023, 50(7): 794-808.
    [20] JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8. (祭程, 关锐, 朱苗勇, 等. 重轨钢凝固末端机械压下对溶质偏析行为的影响[C]. 第十二届中国钢铁年会, 中国北京, 2019: 8.

    JI C, GUAN R, ZHU M Y, et al. Effect of mechanical reduction technology in the heavy rail bloom continuous casting on the solute segregation[C]. The 12th China Iron and Steel Annual Conference, Beijing, China, 2019: 8.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-20
  • 录用日期:  2025-09-15
  • 修回日期:  2025-08-29
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回