Study on aging strengthening of Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel
-
摘要: 对熔炼制备的Fe-22Mn-0.6C-3.5Cu-0.3V高锰TWIP钢进行固溶和时效处理,研究该钢的时效析出行为和强化机理。结果表明:固溶态和时效态高锰TWIP钢的基体均为奥氏体组织,经时效处理后在奥氏体基体中析出纳米级的富Cu相和VC碳化物,它们均与基体存在立方取向关系,其中富Cu相与基体之间的界面是共格的,而VC碳化物是非共格的;室温拉伸力学性能显示富Cu相和VC碳化物的析出显著提高了高锰TWIP钢的屈服强度,与固溶态钢相比,时效态钢的屈服强度提高了60.6%;根据析出强化理论计算得到的屈服剪切应力增量与试验的结果相符合,其中来源于富Cu相位错切过强化机制的强度贡献占增量的60.8%,而来源于VC碳化物位错绕过强化机制的强度贡献占增量的39.2%。Abstract: Solid solution and aging treatment had been conducted on Fe-22Mn-0.6C-3.5Cu-0.3V high-manganese TWIP steel prepared by melting, and the precipitation behavior during aging as well as the associated strengthening mechanisms had been investigated. The results show that the matrix in both solid solution and aging-treated high-manganese TWIP steels is austenitic structure. After aging treatment, nano-sized Cu-rich phases and VC carbides precipitate in the austenitic matrix, both of them show a cube-on-cube orientation relationship with the matrix. The interface between Cu-rich phase and austenitic matrix is coherent, while the VC carbide is non-coherent. The tensile properties at room temperature indicates the precipitation of Cu-rich phase and VC carbide can significantly increase the yield strength of high-manganese TWIP steel. The yield strength of aging-treated steel is increased by 60.6% higher than that of solid solution-treated steel. The yield shear stress increment calculated based on the precipitation strengthening theory is good agreement with the experimental results. The strength contribution from dislocation shear strengthening mechanism of Cu-rich phase accounts for 60.8% of the increment, while that from dislocation bypass strengthening mechanism of VC carbide accounts for 39.2% of the increment.
-
表 1 高锰TWIP钢的化学成分
Table 1. Chemical compositions of high-manganese TWIP steel
% Element Mn C Cu V Fe Nominal composition 22 0.6 3.5 0.3 Bal. Measured composition 23.69 0.59 3.60 0.31 Bal. 表 2 高锰TWIP钢的室温拉伸力学性能
Table 2. Room-temperature tensile properties of high-manganese TWIP steel
Sample Rp0.2 Rm A/% Solution treatment 303.5 740.1 77.2 Aging treatment 487.4 833.1 36.3 -
[1] BOJA M F S, GIORDANA M F, BANEGAS S, et al. Twinning-induced plasticity steel for the automotive industry: design stress for gas tungsten arc welded parts[J]. Journal of Materials Engineering and Performance, 2025, 34(4): 3182-3196. doi: 10.1007/s11665-024-09257-1 [2] LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17. (李欣, 马涛, 曹玉鹏, 等. TWIP钢层错能及机理的研究进展[J]. 热加工工艺, 2019, 48(16): 13-17.LI X, MA T, CAO Y P, et al. Research progress on fault energy and mechanism of TWIP steel layers[J]. Hot Working Technology, 2019, 48(16): 13-17. [3] ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175. (曾泽瑶, 罗许. Si添加对高Mn-N型TWIP不锈钢力学性能的影响研究[J]. 钢铁钒钛, 2024, 45(4): 170-175.ZENG Z Y, LUO X. Study on the influence of Si addition on the mechanical properties of high Mn-N type TWIP stainless steels[J]. Iron Steel Vanadium Titanium, 2024, 45(4): 170-175. [4] COOMAN B C D, ESTRIN Y, KIM S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 2018, 142: 283-362. doi: 10.1016/j.actamat.2017.06.046 [5] HWANG J K. Deformation behaviors of various Fe-Mn-C twinning-induced plasticity steels: effect of stacking fault energy and chemical composition[J]. Journal of Materials Science, 2020, 55(4): 1779-1795. doi: 10.1007/s10853-019-04018-1 [6] LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93. (LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, 等. 钒微合金化对高锰TWIP钢热加工行为的影响[J]. 钢铁钒钛, 2015, 36(6): 68-73, 93.LLANOS L, PEREDA B, RODRIGUEZ-IBABE J M, et al. Effect of V microalloying in the hot working behavior of high Mn TWIP steels[J]. Iron Steel Vanadium Titanium, 2015, 36(6): 68-73, 93. [7] ISHEIM D, VAYNMAN S, FINE M E, et al. Copper-precipitation hardening in a non-ferromagnetic face-centered cubic austenitic steel[J]. Scripta Materialia, 2008, 59(12): 1235-1238. doi: 10.1016/j.scriptamat.2008.07.045 [8] JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020. (纪佳楠. 高锰奥氏体钢中富铜纳米相析出行为及强化机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.JI J N. Precipitation behavior of Cu-rich nanoscale phase and strengthening mechanism in high manganese austenite[D]. Harbin: Harbin Engineering University, 2020. [9] SCOTT C, REMY B, COLLET J L, et al. Precipitation strengthening in high manganese austenitic TWIP steels[J]. International Journal of Materials Research, 2011, 102(5): 538-549. doi: 10.3139/146.110508 [10] ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. (张志波, 刘振宇, 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094ZHANG Z B, LIU Z Y, ZHANG W N. Effect of VC particles on the strain hardening behavior of twip steel[J]. Acta Metall Sinica, 2012, 48(9): 1067-1073. doi: 10.3724/SP.J.1037.2012.00094 [11] JIANG S H, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464. doi: 10.1038/nature22032 [12] SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518. (沈琴, 王晓姣, 赵安宇, 等. Mn对钢中富Cu相和NiAl相复合析出过程的影响[J]. 金属学报, 2016, 52(5): 513-518.SHEN Q, WANG X J, ZHAO A Y, et al. Effects of Mn on multi-precipitates evolution of Cu-rich and NiAl phase in steels[J]. Acta Metall Sinica, 2016, 52(5): 513-518. [13] DU Y B, HU X F, ZHANG S Q, et al. Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel[J]. Materials Characterization, 2022, 190: 112014. doi: 10.1016/j.matchar.2022.112014 [14] JIAO Z B, LUAN J H, MILLER M K, et al. Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels[J]. Acta Materialia, 2016, 110: 31-43. doi: 10.1016/j.actamat.2016.03.024 [15] YANG X C, DI X J, WANG J S, et al. The co-precipitation evolution of NiAl and Cu nanoparticles and its influence on strengthening and toughening mechanisms in low-carbon ultra-high strength martensite seamless tube steel[J]. International Journal of Plasticity, 2023, 166: 103654. doi: 10.1016/j.ijplas.2023.103654 [16] MILLÁN J, SANDLÖBES S, AL-ZUBI A, et al. Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe-Mn maraging steels[J]. Acta Materialia, 2014, 76: 94-105. doi: 10.1016/j.actamat.2014.05.016 [17] KAN L Y, YE Q B, WANG Q H, et al. Refinement of Cu-M2C precipitates and improvement of strength and toughness by Ti microalloying in a Cu-bearing steel[J]. Materials Science and Engineering A, 2021, 802: 140678. doi: 10.1016/j.msea.2020.140678 [18] WANG J Q, RUAN H H, DING Z Y, et al. A novel maraging stainless steel ultra-high-strengthened by multi-nanoprecipitations[J]. Scripta Materialia, 2023, 226: 115224. doi: 10.1016/j.scriptamat.2022.115224 [19] LIEM S Y, KRESSE G, CLARKE J H R. First principles calculation of oxygen adsorption and reconstruction of Cu (110) surface[J]. Surface Science, 1998, 415(1): 194-211. [20] CURTZE S, KUOKKALA V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141. doi: 10.1016/j.actamat.2010.05.049 [21] HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010. (胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.HU G X, CAI X, RONG Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010. [22] RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006. (戎咏华. 分析电子显微学导论[M]. 北京: 高等教育出版社, 2006.RONG Y H. Introduction to analytical electron microscopy[M]. Beijing : Higher Education Press, 2006. [23] AN F C, ZHANG Y, WANG J J, et al. Precipitation process of vanadium carbide in M23C6 by atomic-scale configuration analysis[J]. Journal of Materials Science, 2020, 55: 762-773. doi: 10.1007/s10853-019-03965-z [24] MARTIN J W. Precipitation hardening: theory and applications[M]. Oxford: Butterworth-Heinemann, 2012. [25] CHO H J, CHO Y, KIM S J. Simultaneous enhancement of tensile properties and hydrogen embrittlement resistance in Cu-bearing austenitic stainless steel[J]. Metals and Materials International, 2025, 31(6): 1515-1525. doi: 10.1007/s12540-024-01835-1 [26] CHI C Y, YU H Y, DONG J X, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science: Materials International, 2012, 22(3): 175-185. doi: 10.1016/j.pnsc.2012.05.002 [27] FINE M E, ISHEIM D. Origin of copper precipitation strengthening in steel revisited[J]. Scripta Materialia, 2005, 53(1): 115-118. doi: 10.1016/j.scriptamat.2005.02.034 [28] FRIEDEL J. Dislocations[M]. London: Pergamon Press, 1964. [29] BROWN L M, HAM P K. Strengthening methods in crystals[M]. KELLY A, NICHOLSON R B (Eds. ). London: Applied Science Publishers, 1965: 3-135. [30] MARTIN J W. Precipitation Hardening[M]. Oxford: Butterworth-Heinemann, 1998. [31] MURR L E. Interfacial phenomena in metals and alloys[M]. Boston: Addison Wesley, 1975. [32] GUTIERREZ-URRUTIA I, RAABE D. Dislocation and twin substructure evolution during strain hardening of an Fe–22wt. % Mn–0.6wt. % C TWIP steel observed by electron channeling contrast imaging[J]. Acta Materialia, 2011, 59(16): 6449-6462. doi: 10.1016/j.actamat.2011.07.009 [33] HIRSCH P B, KELLY A. Stacking-fault strengthening[J]. Philosophical Magazine, 1965, 12(119): 881-900. doi: 10.1080/14786436508228118 [34] MONZEN R, KITA K. Ostwald ripening of spherical Fe particles in Cu-Fe alloys[J]. Philosophical Magazine Letters, 2002, 82(7): 373-382. doi: 10.1080/09500830210137399 [35] HAJO D. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review[J]. Journal of Material Science, 2011, 46: 289-306. doi: 10.1007/s10853-010-5010-6 -
下载: