The effect of hot rolling process on the microstructure and properties of grade E microalloyed angle steel
-
摘要: 针对E级微合金角钢,设计了系统性、多方案的模拟试验,通过分析原奥氏体加热长大规律、形变奥氏体再结晶、组织相变、第二相粒子析出等内容,阐明了加热温度、变形温度、冷却速率工艺对组织及性能的影响。结果表明:随着加热温度升高,铸坯原奥氏体晶粒尺寸呈阶段性增长,
1125 ~1200 ℃温度区间内长大速率相对较慢。950~850 ℃为奥氏体区,随着变形温度降低,铁素体平均晶粒尺寸由11.2 μm减小到了9.2 μm;当温度降低至800~750 ℃两相区后,组织出现混晶,部分铁素体晶粒长大至13.6 μm。当冷速为2~5 ℃/s时,可获得均匀的铁素体+珠光体组织;当冷速达到10 ℃/s时,组织呈现为团簇珠光体+网状/针状铁素体。最后,经低温生产试制,铁素体晶粒尺寸细化了约30%,低温冲击韧性提高了约20%。Abstract: A systematic and multi-scheme simulation test was designed for grade E microalloyed angle steel. The effects of heating temperature, deformation temperature and cooling rate on microstructure and properties were clarified by analyzing the heating and growth law of original austenite, recrystallization of deformed austenite, phase transformation and precipitation of second phase particles. The results show that with the increase of heating temperature, the growth rate of original austenite grain size of slab depends on the heating temperature ranges, and the growth rate is relatively slow in the temperature range of1125 ~1200 ℃. The austenite region is within 950~850 ℃. With the decrease of deformation temperature, the average grain size of ferrite decreases from 11.2 μm to 9.2 μm. When the deformation temperature is reduced to 800~750 ℃, the microstructure appears mixed grain, and some ferrite grains grow up to 13.6 μm. When the cooling rate is at 2~5 ℃/s, uniform ferrite+pearlite structure can be obtained. When the cooling rate reaches 10 ℃/s, the microstructure consists of cluster pearlite + reticular / acicular ferrite. Finally, the result of trial production at low temperature showed that the ferrite grain size was refined by about 30%, and the low temperature impact toughness was increased by about 20%. -
表 1 试验钢化学成分
Table 1. Chemical composition of the tested steel
% C Si Mn P S Als V Nb 0.15 0.30 1.40 0.008 0.007 0.025 0.04 0.02 表 2 不同冷却速率条件下试样的维氏硬度及强度换算结果
Table 2. Vickers hardness and strength conversion results of samples under different cooling rates
Sample
No.Cooling rate/
(℃·s−1)Vickers hardness
(HV10)Strength conversion[29]/
MPa(a) 2 139 446 (b) 5 150 480 (c) 10 171 548 表 3 生产试制方案及主要工艺参数
Table 3. Production trial scheme and main process parameters
Test
No.Heating
temperature/
℃Rough rolling
temperature/
℃Isothermal
time/sFinishing
temperature/
℃Rate of
cooling/
(℃·s−1)1# 1180 1100 0 980 2 2# 1180 1100 50 950 2 3# 1180 1100 90 920 2 表 4 生产试制性能检测结果
Table 4. Performance test results of trial production steel
Test No. Upper yield strength ReH/ MPa Tensile strength Rm/MPa Elongation after failure A/% Impact absorbing energy(−40 ℃) KV2/J 1# 421 576 33 108 2# 422 580 32 105 3# 449 592 34 129 -
[1] HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. (何长华. 输电线路铁塔用钢的发展趋势[J]. 电力建设, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012 [2] HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. (黄维, 张志勤, 高真凤, 等. 国外高性能桥梁用钢的研发[J]. 世界桥梁, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006 [3] LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. (吕尚霖, 陈洁, 刘冬, 等. 高性能化建筑钢材的进展概述[J]. 热加工工艺, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659 [4] ROBERT O R. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. doi: 10.1038/nmat3115 [5] SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. (宋立秋, 左军, 佘广夫, 等. 超细晶粒钢的强韧性研究[J]. 钢铁钒钛, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001 [6] ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. (曾尚武, 李凤辉, 张磊, 等. 输电铁塔用Q420级30#大规格角钢组织性能研究[J]. 钢铁钒钛, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029 [7] CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. (柴锋, 苏航, 杨才福, 等. V-N微合金化高强度铁塔用角钢的研究[J]. 钢铁研究学报, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007 [8] FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. (冯运莉, 刘战英, 陈春生, 等. VN合金在大规格角钢生产中的应用研究[J]. 钢铁钒钛, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008 [9] LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. (刘敏, 王纯, 程知松, 等. 热轧工艺对390 MPa级高铁转向架用钢组织性能影响[J]. 中国冶金, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178 [10] LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. (刘丽萍, 关晓光. 700 MPa级高强汽车用钢热轧工艺研究与应用[J]. 轧钢, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041 [11] REZAEI S R J, SIYASIYA C W, TANG Z H, et al. The influence of final coiling temperature on the microstructure and mechanical properties of high Ti-V HSLA steels[J]. MATEC Web of Conferences, 2022, 370: 03012. doi: 10.1051/matecconf/202237003012 [12] YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. (杨财水, 罗许, 李俊洪, 等. 锰含量和终轧温度对低成本中钛Q345B钢组织性能的影响[J]. 钢铁, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146 [13] WANG Y M, GUO Q Y, HU B, et al. Effect of Nb-V microalloying on the hot deformation behavior of medium Mn steels[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 32(2): 360-368. [14] FELISTERS Z, JUBERT P, GYANARANJAN M, et al. Strengthening mechanisms in vanadium-microalloyed medium-Mn steels[J]. Materials Today Communications, 2024, 41: 110512. doi: 10.1016/j.mtcomm.2024.110512 [15] HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. (胡俊杰, 任英, 张立峰. 铌微合金化高强钢中NbC析出相的生成机理[J]. 工程科学学报, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001 [16] WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104. (汪飞, 胡学文, 徐雁, 等. 钒氮含量对厚规格耐候钢力学性能的影响[J]. 钢铁研究学报, 2023, 35(1): 98-104.WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104. [17] YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. (阳开生. 热处理及NbV-N微合金化对船板钢组织性能的影响[J]. 中国冶金, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103 [18] NARITA K. Physical chemistry of the groups IVa(Ti, Zr), Va(V, Nb, ta)and the rare earth elements in steel[J]. Transactions of the Iron and Steel Institute of Japan, 1975, 15(3): 145. doi: 10.2355/isijinternational1966.15.145 [19] NORDBERG H, ARONSSON B. Solubility of niobium carbide in austenite[J]. JISI, 1968, 12: 1263-1266. [20] SMITH R P. The solubility of niobium carbide in Gamma iron[J]. Trans AIME, 1966, 236: 220-221. [21] YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社出版, 2006.YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006. [22] LI Z Q, ZHANG S Y, HE Y, et al. Influences of second phase particle precipitation, coarsening, growth or dissolution on the pinning effects during grain coarsening processes[J]. Metals, 2023, 13(2): 281. doi: 10.3390/met13020281 [23] AKHTAR M N, KHAN M, KHAN S A, et al. Determination of non-recrystallization temperature for niobium microalloyed steel[J]. Materials, 2021, 14(10): 2639. doi: 10.3390/ma14102639 [24] PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. (彭静, 何月漫, 付天亮. 钒微合金钢奥氏体晶粒尺寸对晶内铁素体形核影响[J]. 钢铁钒钛, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024 [25] CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. (崔桂彬, 鞠新华, 张玉成, 等. 低碳钢中铌含量对奥氏体再结晶的影响[J]. 中国冶金, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368 [26] ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. (张功庭, 唐荻, 郑之旺, 等. 热处理工艺对1000 MPa级含钒高强钢组织和性能的影响[J]. 钢铁钒钛, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025 [27] SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. (石磊, 田鹏勇, 温国强, 等. 淬火工艺对铁素体/马氏体双相钢组织与性能的影响[J]. 金属热处理, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022 [28] PIAO Y, BALINT D S. A discrete dislocation plasticity assessment of the effective temperature in thermodynamic dislocation theory[J]. Acta Materialia, 2025, 287: 120808. doi: 10.1016/j.actamat.2025.120808 [29] GB/T 33362-2016, Metallic materials—Conversion of hardness values[S]. (GB/T 33362-2016, 金属材料 硬度值的换算[S].GB/T 33362-2016, Metallic materials—Conversion of hardness values[S]. [30] SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. (孙岩, 安治国, 张国涛, 等. 铁素体-珠光体型非调质钢连续冷却转变的研究[J]. 轧钢, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054 -
下载: