中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热轧工艺对E级微合金角钢组织及性能的影响

李岩杰 田秀刚 杨洋 李哲 张春花 孙巧梅 张大征

李岩杰, 田秀刚, 杨洋, 李哲, 张春花, 孙巧梅, 张大征. 热轧工艺对E级微合金角钢组织及性能的影响[J]. 钢铁钒钛, 2025, 46(6): 138-146. doi: 10.7513/j.issn.1004-7638.2025.06.017
引用本文: 李岩杰, 田秀刚, 杨洋, 李哲, 张春花, 孙巧梅, 张大征. 热轧工艺对E级微合金角钢组织及性能的影响[J]. 钢铁钒钛, 2025, 46(6): 138-146. doi: 10.7513/j.issn.1004-7638.2025.06.017
LI Yanjie, TIAN Xiugang, YANG Yang, LI Zhe, ZHANG Chunhua, SUN Qiaomei, ZHANG Dazheng. The effect of hot rolling process on the microstructure and properties of grade E microalloyed angle steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 138-146. doi: 10.7513/j.issn.1004-7638.2025.06.017
Citation: LI Yanjie, TIAN Xiugang, YANG Yang, LI Zhe, ZHANG Chunhua, SUN Qiaomei, ZHANG Dazheng. The effect of hot rolling process on the microstructure and properties of grade E microalloyed angle steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 138-146. doi: 10.7513/j.issn.1004-7638.2025.06.017

热轧工艺对E级微合金角钢组织及性能的影响

doi: 10.7513/j.issn.1004-7638.2025.06.017
基金项目: 国家自然科学基金资助项目(52204346)。
详细信息
    作者简介:

    李岩杰,1986年出生,男,河北唐山人,硕士,高级工程师,长期从事钢铁材料检测与工艺研究工作,E-mail:402800923@qq.com

    通讯作者:

    杨洋,1989年出生,男,河北唐山人,博士,主要从事金属轧制理论与工艺方面的研究,E-mail:452975038@qq.com

  • 中图分类号: TG142.1

The effect of hot rolling process on the microstructure and properties of grade E microalloyed angle steel

  • 摘要: 针对E级微合金角钢,设计了系统性、多方案的模拟试验,通过分析原奥氏体加热长大规律、形变奥氏体再结晶、组织相变、第二相粒子析出等内容,阐明了加热温度、变形温度、冷却速率工艺对组织及性能的影响。结果表明:随着加热温度升高,铸坯原奥氏体晶粒尺寸呈阶段性增长,11251200 ℃温度区间内长大速率相对较慢。950~850 ℃为奥氏体区,随着变形温度降低,铁素体平均晶粒尺寸由11.2 μm减小到了9.2 μm;当温度降低至800~750 ℃两相区后,组织出现混晶,部分铁素体晶粒长大至13.6 μm。当冷速为2~5 ℃/s时,可获得均匀的铁素体+珠光体组织;当冷速达到10 ℃/s时,组织呈现为团簇珠光体+网状/针状铁素体。最后,经低温生产试制,铁素体晶粒尺寸细化了约30%,低温冲击韧性提高了约20%。
  • 图  1  模拟试验示意

    (a)加热试验;(b)压缩试验;(c)冷却试验;(d)热模拟试验示例

    Figure  1.  Schematic diagram of simulation tests

    图  2  不同加热温度下的原奥氏体晶粒

    Figure  2.  Original austenite grains of steel after being heated at different temperatures and water-quenched to room temperature

    (a)1 100 ℃;(b)1 125 ℃;(c)1 150 ℃;(d)1 175 ℃;(e)1 200 ℃;(f)1 250 ℃

    图  3  原奥氏体晶粒长大趋势

    Figure  3.  Original austenite grain growth with heating temperature

    图  4  A组试样不同变形温度下的原奥氏体组织

    Figure  4.  The original austenite structure of group A samples after deformed at different temperatures

    (a)950 ℃;(b)900 ℃;(c)850 ℃;(d)800 ℃;(e)750 ℃

    图  5  A组试样不同变形温度下的淬火金相组织

    Figure  5.  Quenching metallographic structure of group a samples after deformed at different temperatures

    (a)950 ℃;(b)900 ℃;(c)850 ℃;(d)800 ℃;(e)750 ℃

    图  6  B组试样不同变形温度下的金相组织

    (a)950 ℃;(b)900 ℃;(c)850 ℃;(d)800 ℃;(e)750 ℃;(f)晶粒尺寸对比

    Figure  6.  The metallographic structure of group B samples after deformed at different temperatures

    图  7  不同轧后冷却速率下的金相及扫描电镜组织

    (a)2 ℃/s金相组织; (b)5 ℃/s金相组织;(c)10 ℃/金相组织;(d)2 ℃/s珠光体SEM;(e)5 ℃/s珠光体SEM;(f)10 ℃/s珠光体SEM

    Figure  7.  Metallographic structure of samples after hot rolling and cooled to room temperature at different cooling rates

    图  8  EBSD数据分析结果

    Figure  8.  EBSD data analysis results of samples after hot rolling and cooled to room temperature at different cooling rates

    (a)2 ℃/s;(b)5 ℃/s;(c)10 ℃/s

    图  9  生产试制金相组织

    (a)1#钢,终轧980 ℃;(b)2#钢,终轧950 ℃;(c)3#钢,终轧920 ℃

    Figure  9.  Metallographic structure of trial production steel

    表  1  试验钢化学成分

    Table  1.   Chemical composition of the tested steel %

    CSiMnPSAlsVNb
    0.150.301.400.0080.0070.0250.040.02
    下载: 导出CSV

    表  2  不同冷却速率条件下试样的维氏硬度及强度换算结果

    Table  2.   Vickers hardness and strength conversion results of samples under different cooling rates

    Sample
    No.
    Cooling rate/
    (℃·s−1
    Vickers hardness
    (HV10)
    Strength conversion[29]/
    MPa
    (a)2139446
    (b)5150480
    (c)10171548
    下载: 导出CSV

    表  3  生产试制方案及主要工艺参数

    Table  3.   Production trial scheme and main process parameters

    Test
    No.
    Heating
    temperature/
    Rough rolling
    temperature/
    Isothermal
    time/s
    Finishing
    temperature/
    Rate of
    cooling/
    (℃·s−1)
    1# 1180 1100 0 980 2
    2# 1180 1100 50 950 2
    3# 1180 1100 90 920 2
    下载: 导出CSV

    表  4  生产试制性能检测结果

    Table  4.   Performance test results of trial production steel

    Test No. Upper yield strength ReH/ MPa Tensile strength Rm/MPa Elongation after failure A/% Impact absorbing energy(−40 ℃) KV2/J
    1# 421 576 33 108
    2# 422 580 32 105
    3# 449 592 34 129
    下载: 导出CSV
  • [1] HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. (何长华. 输电线路铁塔用钢的发展趋势[J]. 电力建设, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012

    HE C H. Development trend of steel used for transmission towers[J]. Electric Power Construction, 2010, 31(1): 45-48. doi: 10.3969/j.issn.1000-7229.2010.01.012
    [2] HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. (黄维, 张志勤, 高真凤, 等. 国外高性能桥梁用钢的研发[J]. 世界桥梁, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006

    HUANG W, ZHANG Z Q, GAO Z F, et al. Research and development of high-performance bridge steel abroad[J]. World Bridges, 2011(2): 18-21. doi: 10.3969/j.issn.1671-7767.2011.02.006
    [3] LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. (吕尚霖, 陈洁, 刘冬, 等. 高性能化建筑钢材的进展概述[J]. 热加工工艺, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659

    LÜ S L, CHEN J, LIU D, et al. Overview of progress of high-performance construction steel[J]. Hot Working Technolog, 2020, 49(14): 11-15. doi: 10.14158/j.cnki.1001-3814.20191659
    [4] ROBERT O R. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. doi: 10.1038/nmat3115
    [5] SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. (宋立秋, 左军, 佘广夫, 等. 超细晶粒钢的强韧性研究[J]. 钢铁钒钛, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001

    SONG L Q, ZUO J, SHE G F, et al. Research on strength and toughness of ultre-fine grain steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 1-5. doi: 10.3969/j.issn.1004-7638.2004.02.001
    [6] ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. (曾尚武, 李凤辉, 张磊, 等. 输电铁塔用Q420级30#大规格角钢组织性能研究[J]. 钢铁钒钛, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029

    ZENG S W, LI F H, ZHANG L, et al. Microstructure and properties of Q420 30# large channel steel used for transmission towers[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 157-162. doi: 10.7513/j.issn.1004-7638.2017.05.029
    [7] CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. (柴锋, 苏航, 杨才福, 等. V-N微合金化高强度铁塔用角钢的研究[J]. 钢铁研究学报, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007

    CHAI F, SU H, YANG C F, et al. V-N microalloyed high strength tower angle steel[J]. Journal of Iron and Steel Research, 2010, 22(11): 39-44. doi: 10.13228/j.boyuan.issn1001-0963.2010.11.007
    [8] FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. (冯运莉, 刘战英, 陈春生, 等. VN合金在大规格角钢生产中的应用研究[J]. 钢铁钒钛, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008

    FENG Y L, LIU Z Y, CHEN C S, et al. Application of VN alloy in production of large size angle steel[J]. Iron Steel Vanadium Titanium, 2004, 25(2): 40-43. doi: 10.3969/j.issn.1004-7638.2004.02.008
    [9] LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. (刘敏, 王纯, 程知松, 等. 热轧工艺对390 MPa级高铁转向架用钢组织性能影响[J]. 中国冶金, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178

    LIU M, WANG C, CHENG Z S, et al. Effect of hot rolling process on microstructure and properties of 390 MPa grade steel used for EMU bogie[J]. China Metallurgy, 2019, 29(11): 49-54. doi: 10.13228/j.boyuan.issn1006-9356.20190178
    [10] LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. (刘丽萍, 关晓光. 700 MPa级高强汽车用钢热轧工艺研究与应用[J]. 轧钢, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041

    LIU L P, GUAN X G. Research and application of hot rolling technology for production 700 MPa high strength automobile steel[J]. Steel Rolling, 2018, 35(2): 20-25. doi: 10.13228/j.boyuan.issn1003-9996.20170041
    [11] REZAEI S R J, SIYASIYA C W, TANG Z H, et al. The influence of final coiling temperature on the microstructure and mechanical properties of high Ti-V HSLA steels[J]. MATEC Web of Conferences, 2022, 370: 03012. doi: 10.1051/matecconf/202237003012
    [12] YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. (杨财水, 罗许, 李俊洪, 等. 锰含量和终轧温度对低成本中钛Q345B钢组织性能的影响[J]. 钢铁, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146

    YANG C S, LUO X, LI J H, et al. Effects of manganese content and finishing rolling temperature on the microstructure and mechanical properties of low cost middle titanium Q345B steel[J]. Iron and Steel, 2014, 49(11): 59-63. doi: 10.13228/j.boyuan.issn0449-749x.20140146
    [13] WANG Y M, GUO Q Y, HU B, et al. Effect of Nb-V microalloying on the hot deformation behavior of medium Mn steels[J]. International Journal of Minerals, Metallurgy and Materials, 2024, 32(2): 360-368.
    [14] FELISTERS Z, JUBERT P, GYANARANJAN M, et al. Strengthening mechanisms in vanadium-microalloyed medium-Mn steels[J]. Materials Today Communications, 2024, 41: 110512. doi: 10.1016/j.mtcomm.2024.110512
    [15] HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. (胡俊杰, 任英, 张立峰. 铌微合金化高强钢中NbC析出相的生成机理[J]. 工程科学学报, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001

    HU J J, REN Y, ZHANG L F. Formation mechanism of NbC precipitates in micro-alloyed Nb high-strength steel[J]. Chinese Journal of Engineering, 2023, 45(10): 1729-1739. doi: 10.13374/j.issn2095-9389.2022.07.21.001
    [16] WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104. (汪飞, 胡学文, 徐雁, 等. 钒氮含量对厚规格耐候钢力学性能的影响[J]. 钢铁研究学报, 2023, 35(1): 98-104.

    WANG F, HU X W, XU Y, et al. Effect of vanadium and nitrogen content on mechanical properties of thick weathering steel[J]. Journal of Iron and Steel Research, 2023, 35(1): 98-104.
    [17] YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. (阳开生. 热处理及NbV-N微合金化对船板钢组织性能的影响[J]. 中国冶金, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103

    YANG K S. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 27(10): 34-36. doi: 10.13228/j.boyuan.issn1006-9356.20170103
    [18] NARITA K. Physical chemistry of the groups IVa(Ti, Zr), Va(V, Nb, ta)and the rare earth elements in steel[J]. Transactions of the Iron and Steel Institute of Japan, 1975, 15(3): 145. doi: 10.2355/isijinternational1966.15.145
    [19] NORDBERG H, ARONSSON B. Solubility of niobium carbide in austenite[J]. JISI, 1968, 12: 1263-1266.
    [20] SMITH R P. The solubility of niobium carbide in Gamma iron[J]. Trans AIME, 1966, 236: 220-221.
    [21] YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社出版, 2006.

    YONG Q L. Second phases in structural steels[M]. Beijing: Published by Metallurgical Industry Press, 2006.
    [22] LI Z Q, ZHANG S Y, HE Y, et al. Influences of second phase particle precipitation, coarsening, growth or dissolution on the pinning effects during grain coarsening processes[J]. Metals, 2023, 13(2): 281. doi: 10.3390/met13020281
    [23] AKHTAR M N, KHAN M, KHAN S A, et al. Determination of non-recrystallization temperature for niobium microalloyed steel[J]. Materials, 2021, 14(10): 2639. doi: 10.3390/ma14102639
    [24] PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. (彭静, 何月漫, 付天亮. 钒微合金钢奥氏体晶粒尺寸对晶内铁素体形核影响[J]. 钢铁钒钛, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024

    PENG J, HE Y M, FU T L. Effect of austenite grain size on intracrystalline ferrite nucleation in vanadium microalloyed steel[J]. Iron Steel Vanadium Titanium, 2025, 46(2): 175-181. doi: 10.7513/j.issn.1004-7638.2025.02.024
    [25] CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. (崔桂彬, 鞠新华, 张玉成, 等. 低碳钢中铌含量对奥氏体再结晶的影响[J]. 中国冶金, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368

    CUI G B, JÜ X H, ZHANG Y C, et al. Effect of Nb content on austenite recrystallization in low carbon steel[J]. China Metallurgy, 2019, 29(8): 52-57. doi: 10.13228/j.boyuan.issn1006-9356.20180368
    [26] ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. (张功庭, 唐荻, 郑之旺, 等. 热处理工艺对1000 MPa级含钒高强钢组织和性能的影响[J]. 钢铁钒钛, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025

    ZHANG G T, TANG D, ZHENG Z W, et al. Effects of heat-treatment processes on microstructures and properties of a 1000 MPa grade vanadium-alloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 139-144. doi: 10.7513/j.issn.1004-7638.2020.04.025
    [27] SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. (石磊, 田鹏勇, 温国强, 等. 淬火工艺对铁素体/马氏体双相钢组织与性能的影响[J]. 金属热处理, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022

    SHI L, TIAN P Y, WEN G Q, et al. Effect of quenching processes on microstructure and mechanical properties of a ferrite-martensite dual-phase steel[J]. Heat Treatment of Metals, 2025, 50(3): 138-142. doi: 10.13251/j.issn.0254-6051.2025.03.022
    [28] PIAO Y, BALINT D S. A discrete dislocation plasticity assessment of the effective temperature in thermodynamic dislocation theory[J]. Acta Materialia, 2025, 287: 120808. doi: 10.1016/j.actamat.2025.120808
    [29] GB/T 33362-2016, Metallic materials—Conversion of hardness values[S]. (GB/T 33362-2016, 金属材料 硬度值的换算[S].

    GB/T 33362-2016, Metallic materials—Conversion of hardness values[S].
    [30] SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. (孙岩, 安治国, 张国涛, 等. 铁素体-珠光体型非调质钢连续冷却转变的研究[J]. 轧钢, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054

    SUN Y, AN Z G, ZHANG G T, et al. Study on continuous cooling transformation of ferrite-pearlite non-quenched and tempered steel[J]. Steel Rolling, 2019, 36(3): 37-41. doi: 10.13228/j.boyuan.issn1003-9996.20180054
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-07
  • 录用日期:  2025-09-26
  • 修回日期:  2025-09-01
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回