中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织和性能的影响

熊雪刚 罗瀚宇 曾瀚 曹建春 周先超 汪创伟

熊雪刚, 罗瀚宇, 曾瀚, 曹建春, 周先超, 汪创伟. Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织和性能的影响[J]. 钢铁钒钛, 2025, 46(6): 147-156. doi: 10.7513/j.issn.1004-7638.2025.06.018
引用本文: 熊雪刚, 罗瀚宇, 曾瀚, 曹建春, 周先超, 汪创伟. Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织和性能的影响[J]. 钢铁钒钛, 2025, 46(6): 147-156. doi: 10.7513/j.issn.1004-7638.2025.06.018
XIONG Xuegang, LUO Hanyu, ZENG Han, CAO Jianchun, ZHOU Xianchao, WANG Chuangwei. Effect of Zr on the microstructure and properties of direct-quenched Ti microalloyed high-strength low carbon martensitic steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 147-156. doi: 10.7513/j.issn.1004-7638.2025.06.018
Citation: XIONG Xuegang, LUO Hanyu, ZENG Han, CAO Jianchun, ZHOU Xianchao, WANG Chuangwei. Effect of Zr on the microstructure and properties of direct-quenched Ti microalloyed high-strength low carbon martensitic steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 147-156. doi: 10.7513/j.issn.1004-7638.2025.06.018

Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2025.06.018
基金项目: 攀西试验区第五批项目(钛微合金化耐候钢开发及应用)。
详细信息
    作者简介:

    熊雪刚,1988年出生,男,江西金溪人,硕士,高级工程师,研究方向为热轧高强钢产品研发,E-mail:xuegangxiong@163.com

    通讯作者:

    曹建春,1971年出生,女,内蒙古包头人,教授,博士,研究方向为先进钢铁材料研究,E-mail:nmcjc@163.com

  • 中图分类号: TG142.1

Effect of Zr on the microstructure and properties of direct-quenched Ti microalloyed high-strength low carbon martensitic steel

  • 摘要: 通过两阶段热机械加工结合直接淬火工艺,系统研究了在950~850 ℃的终轧温度范围,Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织性能及强化机制的影响。结果表明,随着终轧温度的降低,Ti钢和Ti-Zr钢的硬度先升高后降低,Ti钢中的析出物的数量逐渐减少,而Ti-Zr钢中析出物的数量先增加后减少;终轧温度875 ℃时Ti钢的硬度(HV)达到最高值338.8,终轧温度900 ℃时Ti-Zr钢的硬度(HV)达到最大值332.2。Zr的加入使Ti微合金钢中显微组织的细小化和均匀化程度提高,使原始奥氏体晶粒平均尺寸减小了2.9~6.0 µm,几何必需位错密度由1.6×1013 m−2提高到6.6×1013 m−2,马氏体块的平均尺寸降低了0.13~0.38 µm。Zr的加入促进了Ti元素在奥氏体中的固溶,使碳氮化物从奥氏体中的形变诱导析出率降低了10%以上。此外,固溶强化和位错强化是Ti-Zr钢的主要强化机制,约占总屈服强度的60%。
  • 图  1  热压缩模拟工艺路线

    Figure  1.  Thermal compression simulation process route

    图  2  不同终轧温度变形后两种试验钢原始奥氏体微观形貌和晶粒大小分布

    Figure  2.  The prior austenite microstructure morphology and grain size distribution of the two test steels deformed at different final rolling temperatures

    (a1)~(a5): Ti steel; (b1)~(b5): Ti-Zr steel

    图  3  Ti钢和Ti-Zr钢在不同温度变形并淬火后的马氏体组织形貌

    Figure  3.  The martensite microstructure morphology in the Ti steel and Ti-Zr steel deformed at different final rolling temperatures

    (a1)~(a5): Ti steel; (b1)~(b5): Ti-Zr steel

    图  4  不同终轧温度变形后Ti钢的EBSD图

    (a1)~(a3): IQ图; (b1)~(b3): IPF图; (c1)~(c3): PF图

    Figure  4.  EBSD images of the Ti steel deformed at different final rolling temperatures

    图  5  不同终轧温度变形后Ti-Zr钢的EBSD图

    (a1)~(a3): IQ图; (b1)~(b3): IPF图; (c1)~(c3): PF图

    Figure  5.  EBSD images of the Ti-Zr steel deformed at different final rolling temperatures

    图  6  Ti钢在不同终轧温度下变形后的TEM组织及析出相形貌

    (a1)~(a3): 明场像; (b1)~(b3): 暗场像; (c1)~(c3): 析出相、衍射花纹及EDS检测结果

    Figure  6.  TEM morphology microstructure and precipitated phases of Ti steel deformed at different final rolling temperatures

    图  7  Ti-Zr 钢在不同终轧温度下变形后的TEM组织及析出相形貌

    (a1)~(a3): 明场像; (b1)~(b3): 暗场像; (c1)~(c3): 析出相、衍射花纹及EDS检测结果

    Figure  7.  TEM morphology microstructure and precipitated phases of Ti-Zr steel deformed at different final rolling temperatures

    图  8  试验钢在奥氏体中碳化物的析出动力学曲线

    (a) NrT 曲线;(b) PTT曲线

    Figure  8.  Kinetic curves of carbide precipitation in austenite of test steels

    图  9  试验钢在不同终轧温度变形后的硬度

    Figure  9.  The hardness of tested steel deformed at different final rolling temperatures

    表  1  试验用钢的化学成分

    Table  1.   The chemical compositions of tested steels %

    SteelCSiMnSPNTiZr
    Ti0.0460.211.5≤0.005≤0.0050.0020.13
    Ti-Zr0.0480.221.5≤0.005≤0.0050.0010.130.035
    下载: 导出CSV

    表  2  不同终轧温度下变形后试验钢的晶界角密度及比例、位错密度、马氏体块平均尺寸

    Table  2.   Grain boundary angular density, grain boundary angular ratio, dislocation density and average martensite block size of tested steel deformed at different final rolling temperatures

    SteelFinal rolling
    temperature/ ℃
    Grain boundary angular density×10−5/m−1Grain boundary angular ratio/%Dislocation
    density×10−14/m−2
    Average martensite
    block size/μm
    3°~15°15°~50°50°~62.8°3°~15°15°~50°50°~62.8°
    Ti9508.92.04.845.110.224.24.48±0.1341.93±0.039
    9008.91.05.645.25.228.54.31±0.1291.95±0.039
    8506.81.85.040.910.630.24.01±0.1202.19±0.044
    Ti-Zr9509.22.36.142.110.627.74.64±0.1391.79±0.036
    9008.81.97.239.78.532.64.56±0.1371.82±0.036
    8508.92.18.038.69.134.34.67±0.1401.71±0.034
    下载: 导出CSV

    表  3  轧后试验钢中固溶态 Ti 和 Zr 元素含量的质量百分比

    Table  3.   The mass percentage of Ti and Zr elements in the solid solution of the tested steels after rolling %

    T/℃ Ti steel Ti-Zr steel
    Ti Ti Zr
    950 0.0701 0.0943 0.0166
    900 0.0834 0.0913 0.0158
    850 0.0820 0.0953 0.0162
    下载: 导出CSV

    表  4  不同终轧温度下 Ti 钢和 Ti-Zr 钢中各强化机制贡献

    Table  4.   Contribution of individual strengthening factors to the yield strength in Ti and Ti-Zr steels at different finish rolling temperatures

    Steel Finish rolling
    temperature/℃
    σ0/MPa σs/MPa σg/MPa σd/MPa σp/MPa σy/MPa
    Ti 950 54 228 151 290 36 759
    900 54 244 150 284 130 862
    850 54 242 142 273 131 842
    Ti-Zr 950 54 254 157 295 46 806
    900 54 250 156 292 113 865
    850 54 255 161 296 28 794
    下载: 导出CSV
  • [1] XIE H, DU L X, HU J, et al. Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness[J]. Mater. Sci. Eng. A, 2014, 612: 123-130. doi: 10.1016/j.msea.2014.06.033
    [2] ROCCISANO A, NAFISI S, STALHEIM D, et al. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel[J]. Mater. Charact., 2021, 178: 111207. doi: 10.1016/j.matchar.2021.111207
    [3] LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197. (李红英, 赖永秋. 直接淬火工艺对Q690钢组织和性能的影响[J]. 热加工工艺, 2017, 46(6): 195-197.

    LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197.
    [4] MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28. (麻衡. 在线直接淬火工艺对低碳马氏体钢组织性能的影响[J]. 轧钢, 2019, 36(6): 22-28.

    MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28.
    [5] INOUE J, SADEGHI A, KOSEKI T. Slip band formation at free surface of lath martensite in low carbon steel[J]. Acta Mater., 2019, 165: 129-141. doi: 10.1016/j.actamat.2018.11.026
    [6] WANG J, EL-FALLAH G M A M, WANG Z, et al. Strength improvement over 2 GPa and austenite grain ultra-refinement in a low carbon martensite steel achieved by ultra-rapid heating and quenching[J]. Mater. Sci. Eng. A, 2023, 884: 145538. doi: 10.1016/j.msea.2023.145538
    [7] HANNULA J, PORTER D, KAIJALAINEN A, et al. Optimization of niobium content in direct quenched high-strength steels[J]. Metals, 2020, 10: 807. doi: 10.3390/met10060807
    [8] HANNULA J, PORTER D, KAIJALAINEN A, et al. Evaluation of mechanical properties and microstructures of molybdenum and niobium microalloyed thermomechanically rolled high-strength press hardening steel[J]. JOM., 2019, 71: 2405-2412. doi: 10.1007/s11837-019-03478-9
    [9] XU L, SHI J, CAO W Q, et al. Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement[J]. J. Mater. Sci., 2011, 46: 6384-6389. doi: 10.1007/s10853-011-5586-5
    [10] LI H, WEN G, CAI Z, et al. The effect of vanadium content on hierarchical martensite structure and yield strength of petroleum casing steels[J]. J. Mater. Res. Technol., 2022, 18: 4522-4532. doi: 10.1016/j.jmrt.2022.04.129
    [11] LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62. (刘航航. 钛、锆脱氧对钢中夹杂物及组织的影响[J]. 炼钢, 2015, 31(3): 59-62.

    LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62.
    [12] QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19. (邱国兴, 张红钊, 路峰, 等. 钇、锆对非调质钢中MnS及组织力学性能的影响[J]. 中国冶金, 2024, 34(8): 11-19.

    QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19.
    [13] JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88. (靳星. 锆脱氧对船板EH36夹杂物和耐蚀性能的影响[J]. 连铸, 2022(2): 83-88.

    JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88.
    [14] LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320. (梁国俐, 杨善武, 武会宾, 等. 锆加入量对船板钢焊接CGHAZ低温韧性及夹杂物形态影响[J]. 稀有金属材料与工程, 2013, 42(Suppl.2): 317-320.

    LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320.
    [15] SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62. (沈毓, 万响亮, 刘昱, 等. Zr对高强度钢热影响区第二相粒子及韧性影响[J]. 焊接学报, 2019, 40(8): 55-62.

    SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62.
    [16] CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51. (陈梦杰, 唐建国, 郑志斌, 等. Zr微合金化对Fe-Cr耐磨合金钢组织及力学性能的影响[J]. 金属热处理, 2019, 44(11): 45-51.

    CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51.
    [17] YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024. (尹超坤. 奥氏体化工艺对微锆合金钢组织演变和力学性能的影响[D]. 沈阳: 沈阳工业大学, 2024.

    YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024.
    [18] YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716. (杨永坤, 战东平, 姜周华, 等. Zr处理对含Ti低碳微合金钢中氮化物的影响[J]. 东北大学学报(自然科学版), 2021, 42(12): 1709-1716.

    YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716.
    [19] ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020. (曾敏. 锆含量对钛微合金化低碳钢热变形过程中奥氏体组织的影响[D]. 昆明: 昆明理工大学, 2020.

    ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020.
    [20] ZHENG Z, LONG J, WANG S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution[J]. Corros. Sci. 184, 109382 (2021).
    [21] BORATTO F, BARBOSA R, YUE S, et al. In proceedings of the international conference on physical metallurgy of thermomechanical processing of steels and other metals[C]. THERMEC-88, Tokyo, Japan, 6–10 June 1988. p383.
    [22] LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018. (刘鹏程. Ti-Zr 微合金化低碳钢热变形行为研究[D]. 昆明: 昆明理工大学, 2018.

    LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018.
    [23] CHEN W, GAO P, WANG S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Mater. Sci. Eng. A, 2020, 797: 140115. doi: 10.1016/j.msea.2020.140115
    [24] CELADA-CASERO C, SIETSMA J, SANTOFIMIA M J. The role of the austenite grain size in the martensitic transformation in low carbon steels[J]. Mater. Design, 2019, 167: 107625. doi: 10.1016/j.matdes.2019.107625
    [25] YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006.

    YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006.
    [26] SHIBATA A, NAGOSHI T, SONE M, et al. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test[J]. Mater. Sci. Eng. A, 2010, 527: 7538-7544. doi: 10.1016/j.msea.2010.08.026
    [27] MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mate. Sci. Eng. A, 2006, 438-440: 237-240.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 录用日期:  2025-04-08
  • 修回日期:  2025-03-27
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回