Effect of Zr on the microstructure and properties of direct-quenched Ti microalloyed high-strength low carbon martensitic steel
-
摘要: 通过两阶段热机械加工结合直接淬火工艺,系统研究了在950~850 ℃的终轧温度范围,Zr对直接淬火Ti微合金化高强度低碳马氏体钢组织性能及强化机制的影响。结果表明,随着终轧温度的降低,Ti钢和Ti-Zr钢的硬度先升高后降低,Ti钢中的析出物的数量逐渐减少,而Ti-Zr钢中析出物的数量先增加后减少;终轧温度875 ℃时Ti钢的硬度(HV)达到最高值338.8,终轧温度900 ℃时Ti-Zr钢的硬度(HV)达到最大值332.2。Zr的加入使Ti微合金钢中显微组织的细小化和均匀化程度提高,使原始奥氏体晶粒平均尺寸减小了2.9~6.0 µm,几何必需位错密度由1.6×1013 m−2提高到6.6×1013 m−2,马氏体块的平均尺寸降低了0.13~0.38 µm。Zr的加入促进了Ti元素在奥氏体中的固溶,使碳氮化物从奥氏体中的形变诱导析出率降低了10%以上。此外,固溶强化和位错强化是Ti-Zr钢的主要强化机制,约占总屈服强度的60%。Abstract: In this work, the effect of Zr on the microstructure, properties, and strengthening mechanism of direct quenched Ti microalloyed high-strength low-carbon martensitic steel was systematically studied, through two-stage mechanical processing combined with direct quenching process. And the final rolling temperature of the steel ranged from 950 ℃ to 850 ℃. The results show that as the final rolling temperature decreases, the hardness of both Ti steel and Ti-Zr steel increases first and then decreases, and the number of precipitates in Ti steel decreases gradually, while the number of precipitates in Ti-Zr steel increases first and then decreases. The hardness (HV) of Ti steel reaches the highest value of 338.8 when final rolling at 875 ℃, and the highest hardness (HV) of Ti-Zr steel reaches the highest value of 332.2 when final rolling at 900 ℃. Meanwhile, the uniformity and fineness of the microstructure of Ti microalloyed steel were improved by the addition of Zr, the prior austenite grain size was reduced by 2.9–6.0 µm, the geometrically necessary dislocation density was increased from 1.6×1013 m−2 to 6.6×1013 m−2, and the average size of martensitic blocks was reduced by 0.13–0.38 µm. The solid solution of Ti element in austenite was promoted by the addition of Zr, the precipitation of strain induced carbonitrides in austenite was restrained by more than 10%, and the precipitation strengthening effect was also reduced. Among them, solid solution strengthening and dislocation strengthening were identified as the main strengthening mechanisms of Ti-Zr steel, accounting for approximately 60% of the total yield strength.
-
Key words:
- Zr /
- low carbon martensite /
- final rolling temperature /
- precipitation /
- strengthening mechanism
-
表 1 试验用钢的化学成分
Table 1. The chemical compositions of tested steels
% Steel C Si Mn S P N Ti Zr Ti 0.046 0.21 1.5 ≤0.005 ≤0.005 0.002 0.13 Ti-Zr 0.048 0.22 1.5 ≤0.005 ≤0.005 0.001 0.13 0.035 表 2 不同终轧温度下变形后试验钢的晶界角密度及比例、位错密度、马氏体块平均尺寸
Table 2. Grain boundary angular density, grain boundary angular ratio, dislocation density and average martensite block size of tested steel deformed at different final rolling temperatures
Steel Final rolling
temperature/ ℃Grain boundary angular density×10−5/m−1 Grain boundary angular ratio/% Dislocation
density×10−14/m−2Average martensite
block size/μm3°~15° 15°~50° 50°~62.8° 3°~15° 15°~50° 50°~62.8° Ti 950 8.9 2.0 4.8 45.1 10.2 24.2 4.48±0.134 1.93±0.039 900 8.9 1.0 5.6 45.2 5.2 28.5 4.31±0.129 1.95±0.039 850 6.8 1.8 5.0 40.9 10.6 30.2 4.01±0.120 2.19±0.044 Ti-Zr 950 9.2 2.3 6.1 42.1 10.6 27.7 4.64±0.139 1.79±0.036 900 8.8 1.9 7.2 39.7 8.5 32.6 4.56±0.137 1.82±0.036 850 8.9 2.1 8.0 38.6 9.1 34.3 4.67±0.140 1.71±0.034 表 3 轧后试验钢中固溶态 Ti 和 Zr 元素含量的质量百分比
Table 3. The mass percentage of Ti and Zr elements in the solid solution of the tested steels after rolling
% T/℃ Ti steel Ti-Zr steel Ti Ti Zr 950 0.0701 0.0943 0.0166 900 0.0834 0.0913 0.0158 850 0.0820 0.0953 0.0162 表 4 不同终轧温度下 Ti 钢和 Ti-Zr 钢中各强化机制贡献
Table 4. Contribution of individual strengthening factors to the yield strength in Ti and Ti-Zr steels at different finish rolling temperatures
Steel Finish rolling
temperature/℃σ0/MPa σs/MPa σg/MPa σd/MPa σp/MPa σy/MPa Ti 950 54 228 151 290 36 759 900 54 244 150 284 130 862 850 54 242 142 273 131 842 Ti-Zr 950 54 254 157 295 46 806 900 54 250 156 292 113 865 850 54 255 161 296 28 794 -
[1] XIE H, DU L X, HU J, et al. Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness[J]. Mater. Sci. Eng. A, 2014, 612: 123-130. doi: 10.1016/j.msea.2014.06.033 [2] ROCCISANO A, NAFISI S, STALHEIM D, et al. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel[J]. Mater. Charact., 2021, 178: 111207. doi: 10.1016/j.matchar.2021.111207 [3] LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197. (李红英, 赖永秋. 直接淬火工艺对Q690钢组织和性能的影响[J]. 热加工工艺, 2017, 46(6): 195-197.LI H Y, LAI Y Q. Effect of direct quenching process on microstructure and mechanical properties of Q690 steel[J]. Hot Working Technology, 2017, 46(6): 195-197. [4] MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28. (麻衡. 在线直接淬火工艺对低碳马氏体钢组织性能的影响[J]. 轧钢, 2019, 36(6): 22-28.MA H. Effect of on-line direct quenching process on microstructure and properties of low carbon martensitc steel[J]. Steel Rolling, 2019, 36(6): 22-28. [5] INOUE J, SADEGHI A, KOSEKI T. Slip band formation at free surface of lath martensite in low carbon steel[J]. Acta Mater., 2019, 165: 129-141. doi: 10.1016/j.actamat.2018.11.026 [6] WANG J, EL-FALLAH G M A M, WANG Z, et al. Strength improvement over 2 GPa and austenite grain ultra-refinement in a low carbon martensite steel achieved by ultra-rapid heating and quenching[J]. Mater. Sci. Eng. A, 2023, 884: 145538. doi: 10.1016/j.msea.2023.145538 [7] HANNULA J, PORTER D, KAIJALAINEN A, et al. Optimization of niobium content in direct quenched high-strength steels[J]. Metals, 2020, 10: 807. doi: 10.3390/met10060807 [8] HANNULA J, PORTER D, KAIJALAINEN A, et al. Evaluation of mechanical properties and microstructures of molybdenum and niobium microalloyed thermomechanically rolled high-strength press hardening steel[J]. JOM., 2019, 71: 2405-2412. doi: 10.1007/s11837-019-03478-9 [9] XU L, SHI J, CAO W Q, et al. Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement[J]. J. Mater. Sci., 2011, 46: 6384-6389. doi: 10.1007/s10853-011-5586-5 [10] LI H, WEN G, CAI Z, et al. The effect of vanadium content on hierarchical martensite structure and yield strength of petroleum casing steels[J]. J. Mater. Res. Technol., 2022, 18: 4522-4532. doi: 10.1016/j.jmrt.2022.04.129 [11] LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62. (刘航航. 钛、锆脱氧对钢中夹杂物及组织的影响[J]. 炼钢, 2015, 31(3): 59-62.LIU H H. Influence of titanium and zirconium complex deoxidation on the inclusions and microstructure of steel[J]. Steelmaking, 2015, 31(3): 59-62. [12] QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19. (邱国兴, 张红钊, 路峰, 等. 钇、锆对非调质钢中MnS及组织力学性能的影响[J]. 中国冶金, 2024, 34(8): 11-19.QIU G X, ZHANG H Z, LU F, et al. Effect of Y and Zr on MnS and microstructure and mechanical properties of non- quenched and tempered steel[J]. China Metallurgy, 2024, 34(8): 11-19. [13] JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88. (靳星. 锆脱氧对船板EH36夹杂物和耐蚀性能的影响[J]. 连铸, 2022(2): 83-88.JIN X. Effect of zirconium deoxidation on inclusions and corrosion resistance for high strength ship plate EH36[J]. Continuous Casting, 2022(2): 83-88. [14] LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320. (梁国俐, 杨善武, 武会宾, 等. 锆加入量对船板钢焊接CGHAZ低温韧性及夹杂物形态影响[J]. 稀有金属材料与工程, 2013, 42(Suppl.2): 317-320.LIANG G L, YANG S W, WU H B, et al. Effects of zirconium on impact toughness of CGHAZ and inclusion morphology of hull structure steel plate during the large heat input welding[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl.2): 317-320. [15] SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62. (沈毓, 万响亮, 刘昱, 等. Zr对高强度钢热影响区第二相粒子及韧性影响[J]. 焊接学报, 2019, 40(8): 55-62.SHEN Y, WAN X L, LIU Y, et al. Effect of Zr on second-phase particle and impact toughness in the heat-affected zone of high-strength steel[J]. Transactions of the China Welding Institution, 2019, 40(8): 55-62. [16] CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51. (陈梦杰, 唐建国, 郑志斌, 等. Zr微合金化对Fe-Cr耐磨合金钢组织及力学性能的影响[J]. 金属热处理, 2019, 44(11): 45-51.CHEN M J, TANG J G, ZHENG Z B, et al. Effect of Zr microalloying on microstructure and mechanical properties of Fe-Cr wear-resistant alloy steel[J]. Heat Treatment of Metals, 2019, 44(11): 45-51. [17] YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024. (尹超坤. 奥氏体化工艺对微锆合金钢组织演变和力学性能的影响[D]. 沈阳: 沈阳工业大学, 2024.YIN C K. Effect of austenitizing process on microstructure evolution and mechanical properties of micro-zirconium alloy steel[D]. Shenyang: Shenyang University of Technology, 2024. [18] YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716. (杨永坤, 战东平, 姜周华, 等. Zr处理对含Ti低碳微合金钢中氮化物的影响[J]. 东北大学学报(自然科学版), 2021, 42(12): 1709-1716.YANG Y K, ZHAN D P, JIANG Z H, et al. Effect of Zr treatment on nitride in low carbon Ti- microalloyed steels[J]. Journal of Northeastern University (Natural Science), 2021, 42(12): 1709-1716. [19] ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020. (曾敏. 锆含量对钛微合金化低碳钢热变形过程中奥氏体组织的影响[D]. 昆明: 昆明理工大学, 2020.ZENG M. Effect of zirconium content on austenitic structure during hot deformation of titanium microalloyed low carbon steel[D]. Kunming: Kunming University of Science and Technology, 2020. [20] ZHENG Z, LONG J, WANG S, et al. Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution[J]. Corros. Sci. 184, 109382 (2021). [21] BORATTO F, BARBOSA R, YUE S, et al. In proceedings of the international conference on physical metallurgy of thermomechanical processing of steels and other metals[C]. THERMEC-88, Tokyo, Japan, 6–10 June 1988. p383. [22] LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018. (刘鹏程. Ti-Zr 微合金化低碳钢热变形行为研究[D]. 昆明: 昆明理工大学, 2018.LIU P C. Study on the thermal deformation behavior of Ti-Zr microalloyed low-carbon steel[D]. Kunming: Kunming University of Science and Technology, 2018. [23] CHEN W, GAO P, WANG S, et al. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel[J]. Mater. Sci. Eng. A, 2020, 797: 140115. doi: 10.1016/j.msea.2020.140115 [24] CELADA-CASERO C, SIETSMA J, SANTOFIMIA M J. The role of the austenite grain size in the martensitic transformation in low carbon steels[J]. Mater. Design, 2019, 167: 107625. doi: 10.1016/j.matdes.2019.107625 [25] YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006. (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006.YONG Q L. Secondary phases in steel[M]. Beijing: Metallurgical Industry Press, 2006. [26] SHIBATA A, NAGOSHI T, SONE M, et al. Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test[J]. Mater. Sci. Eng. A, 2010, 527: 7538-7544. doi: 10.1016/j.msea.2010.08.026 [27] MORITO S, YOSHIDA H, MAKI T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Mate. Sci. Eng. A, 2006, 438-440: 237-240. -
下载: